
MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 1

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

GPU: Exploring use cases

in actuarial modeling

Introduction, applicability, benchmarks, and cost-performance overview.

Karol Maciejewski

Chad Schuster

Jim Brackett

Corey Grigg

Graphical processing units (GPUs) have

reached new heights of popularity with

the advent of artificial intelligence (AI)

models in recent years, which would not

have been possible without them. They

provide unmatched computational power

for parallelizable calculations, hundreds

of times faster than traditional CPU-

based computing. Can they be

effectively used for actuarial modeling,

and if so, for which use cases and how?

A brief history of a GPU
Modern GPUs appeared at the end of the 1990s, when 3dfx

and NVIDIA released their first graphics cards with a dedicated

processor to perform graphics-related calculations. This was a

revolutionary idea: offloading some of the heavy calculations

from the computer’s central processing unit (CPU) and freeing

it for other tasks, at the same time allowing much faster

graphics calculations due to the new processor’s specialization.

The initial uses of hardware-accelerated graphics cards were

video processing and gaming (particularly 3D games).

During the 2000s, the spectrum of potential applications for

GPUs has dramatically increased with the introduction of

CUDA and OpenCL, two frameworks that allow users to submit

custom calculations to be computed on the GPU, not restricting

users to the predefined graphics routines implemented by the

chip producers. CUDA (originally: Compute Unified Device

Architecture, although nowadays, it is rarely expanded) is a

proprietary standard created by NVIDIA and is supported by all

its devices, providing implementations in several popular

languages, such as C, C++, C#, Fortran, Python, or Julia.

OpenCL is an open standard supported by many companies

(including NVIDIA and AMD). Currently, with NVIDIA achieving

an almost monopolistic position in the GPU market, CUDA has

emerged as a more popular choice for GPU computing

applications. The introduction and evolution of these standards

have paved the way for broadening the popularity of general-

purpose GPU computations (GPGPU). In 2016, AMD released

ROCm, an open-source equivalent of CUDA for AMD GPUs,

and although gaining traction, it is still significantly less popular

than CUDA.

Over the years, as implementations and libraries in more

languages were added, CUDA gained increasing popularity in

computational physics, biology, chemistry, and finance. Its first

significant expansion to a wider audience came in the second

half of the 2010s, together with blockchain and cryptocurrency

hype, in which GPUs were heavily used for cryptographic

calculations. An even greater explosion in GPU use came in

the 2020s with mass adoption of a new wave of GPT AI models

(generative pre-trained transformers), which currently require

GPUs for training and efficient execution of user queries,

exploiting computations orders of magnitude faster than those

achievable on CPUs.

CPU versus GPU
So, what makes a GPU so much faster than a CPU? A key

aspect is a fundamentally different architecture. A typical CPU

consists of a few (up to several dozen, in the case of advanced

server processors) calculation cores, each extremely fast and

able to compute complex tasks sequentially. The GPU, on the

other hand, comprises thousands of cores, each of which can

accommodate a subset of specific “simple” calculations; this

arrangement opens the door to massively parallel execution.

One can think about the following analogy, where the CPU is a

sports car and the GPU is a cruise ship. Obviously, in a typical

situation, getting from point A to B is faster with a sports car.

However, if one needs to transport (tens of) thousands of

people, being able to do so with one trip of the cruise ship

significantly outperforms making thousands of trips with the

sports car (if, of course, we assume that both points A and B

can be reached by the car and the ship).

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 2

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

The above thought exercise also highlights another important

characteristic of a GPU—all the passengers are traveling on

the same route. Translating this back to computational terms, a

GPU can execute highly parallel calculations by assigning each

of its many cores to a data element, provided that the same

operation is performed on each of them. This model of

calculations is called SIMD (single instruction, multiple data).1

Historically, PC CPUs have been single-core and focused on

sequential execution. Over the years, they have been extended

to have multiple cores and, in more recent years, even to

include some SIMD-like instructions (for example, several

versions of the AVX instruction set support vectorized

operations). The base architecture, however, is subject to

limitations on how dramatically it can change, as it needs to be

able to handle legacy cases. GPUs, on the other hand, have

been designed from scratch with a different purpose and

execution model in mind, so they are still in a different league

with respect to parallelizing calculations.

Nowadays, there are many manufacturers (even if one is in a

clearly dominant position), models, and generations of GPU

cards available. Are all GPUs equal? Absolutely not. So, what

is the best GPU to run a particular set of computations? The

answer depends on the type of calculations needed and

requires a deeper understanding of the GPU architecture and

the different types of calculations it can handle.

Understanding GPU performance
The first point is the general-purpose calculation units

themselves. There are several types of contemporary GPU

cards. The main ones, and historically the first, are called

CUDA cores in NVIDIA cards and Stream Processors in AMD

cards. Although the naming differs between manufacturers, the

concepts and functionalities are largely the same. In the

remainder of this paper, we will use NVIDIA naming for

conciseness. Typically, the number of CUDA cores constrains

the maximum level of parallelization that can be achieved;

more cores mean higher performance. This is partially true. In

fact, there are several types of CUDA cores in each GPU,

specializing in performing calculations on different types of

numeric data. The number of CUDA cores reported as a single

number in most marketing materials and simple technical

specifications refers to the cores specialized for single-

precision floating-point calculations (denoted FP32, with 32 bits

used to represent the number in computer memory). There are,

however, several other types of numbers, each with a different

type of CUDA core—for example, INT32 for integer numbers,

FP16 for half-precision floating point numbers, or FP64 for

double-precision floating point numbers. In most current

1. In fact, the model utilized by GPUs is its close relative, called single instruction,

multiple threads (SIMT). Explaining the technical differences between these

are outside the scope of this paper.

consumer- and even workstation-level GPUs, the number of

FP64 cores is lower than the number of FP32 and lower-

precision cores. This disparity was present even in first-

generation GPUs but has been amplified in more recent

generations, as the most common uses of GPGPU were

focused on computations that do not require such high

precision (e.g., most machine learning applications and

generative AI use). Boosting performance in these areas (by

increasing the number of relevant cores) has necessitated a

sacrifice in other areas. Unfortunately, scientific (and actuarial)

calculations typically require higher precision, so FP64

performance is much more important. Although top-of-the-line

server-grade GPUs in each generation have retained this

capability for high-precision numbers, each successive

generation comes with a heftier price tag.

Given this trend, it turns out that a server-grade GPU from

several generations ago might outperform some of the much

more expensive current consumer or professional GPUs in high-

precision calculations. To compare different devices’ compute

capabilities, instead of looking at the number of cores, it can be

more instructive to look at FLOPS (Floating Point Operations Per

Second), which, for GPUs, are typically measured with giga- or

tera- prefixes (109 and 1012, respectively).

FIGURE 1: SELECTED GPU COMPUTE CAPABILITIES OVER TIME

GPU YEAR TIER

F32

TFLOPS

F64

TFLOPS

NVIDIA 8800GS 2008 Consumer 0.26 N/A

ATI Radeon HD 4870 2008 Consumer 1.2 0.24

NVIDIA GTX 980 2014 Consumer 4.98 0.16

AMD Radeon R9 295X2 2014 Consumer 5.73 0.72

NVIDIA Tesla K80 2014 Server 4.11 1.37

AMD FirePro W9100 2014 Server 5.24 2.62

NVIDIA Tesla P100 2016 Server 9.53 4.76

NVIDIA RTX 2080 2018 Consumer 10.07 0.31

NVIDIA Tesla V100 2018 Server 14.13 7.07

NVIDIA A100 2021 Server 19.49 9.75

NVIDIA RTX 4090 2022 Consumer 82.58 1.29

NVIDIA H100 2022 Server 51.22 25.61

AMD Radeon MI300X 2023 Server 81.72 81.72

NVIDIA H200 2024 Server 60.32 30.16

NVIDIA RTX 5090 2025 Consumer 104.8 1.64

Source: Compiled based on TechPowerUp GPU database2

2. TechPowerUp. (n.d.). GPU Specs Database. Retrieved September 24, 2025,

from https://www.techpowerup.com/gpu-specs/.

https://www.techpowerup.com/gpu-specs/

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 3

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

In a sample from hundreds of models over the years, it is clear

that contemporary consumer GPUs provide the best value for

F32 calculations, whereas 10-year-old server GPUs still

outperform them for F64 calculations. In the last few

generations, an even stronger emphasis has been placed on

the F16 and on new types of cores, namely tensor cores

(NVIDIA) or matrix cores (AMD); these cores are heavily

utilized in generative AI applications (and for brevity are not

shown in the table above).

Tensor cores perform, in a single processor cycle, a fused

multiply-add (FMA) operation on matrices, bringing

parallelization to another level. Not every computational

problem relies on or can be reformulated to this kind of

operation, but the recent generative AI models depend heavily

on it. As generative AI is responsible for most recent GPU

demand, it is no surprise that manufacturers have been

focusing on this new type of core. However, unless an actuarial

model can be formulated as a series of matrix multiplication

and additions, this feature of the latest GPUs will be of limited

usefulness in the actuarial domain. Even for cases where a

model can leverage FMA operations, tensor cores are

specialized for specific types of numbers, typically

accommodating lower-precision cases suitable for AI.

Accordingly, high-precision FMA operations required for

actuarial modeling will still be significantly less performant.

Another consideration is memory availability in the GPU device

(VRAM, from the original Video RAM). By design, GPUs

require data to be in dedicated device memory and not in the

general system memory (RAM). This means that the more

VRAM the device has, the more data it can store and the more

calculations it can execute in parallel (this is true for data-

intensive problems, which have relatively large data input per

computation unit). There are also differences between GPU

generations and models regarding the type of memory used

and the corresponding data throughput, and server-grade

GPUs tend to have more advanced, faster memory dies. As we

will see later in this paper, this can also make a substantial

difference for some applications.

The computational power of GPUs comes with an increasingly

high price tag. Before the cryptocurrency boom, a top-tier

consumer GPU would cost significantly less than $1,000 (e.g.,

NVIDIA GTX 1080 released in 2016 cost $599 at launch3),

whereas a server-grade GPU would be around $5,000 (e.g.,

NVIDIA Tesla P100 released in 2016 cost $5,699 at launch4).

However, since that time, there have been three notable

events contributing to an extreme rise in price:

 Demand surge due to cryptocurrency boom

 Chip shortage and logistic problems during

COVID pandemic

3. TechPowerUp. (n.d.). NVIDIA GeForce GTX 1080. Retrieved September 24,

2025, from https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839.

 An even bigger demand increase due to the dawn

of generative AI

As a result, the recent top-tier consumer card, such as the

NVIDIA RTX 5090, launched at $1,999, and a server-grade

GPU, such as the NVIDIA H200 or AMD MI300X, will cost over

$30,000. New GPU cards also have higher power consumption

requirements, which additionally makes them more expensive to

run and cool. For a company that utilizes cloud resources, it is

certainly the case that the hourly cost of a GPU-equipped

resource will be higher than that of a CPU-only calculation

resource. The ratio of GPU-to-CPU hourly cost will vary based

on the resources that one is utilizing, but whatever the selection,

a comparison of total cost is clearly an important consideration.

So, is it still worthwhile to go down the GPU path? What kind of

real-world performance improvements are possible? There are

many factors influencing this, and there are several things to

keep in mind when faced with claims of “N times performance

gains.” In the table below, we highlight a few key aspects:

FIGURE 2: GPU-CPU PERFORMANCE GAIN FACTORS

1. Computational problem

The type of computational problem at hand will determine

the possible performance gains. Some problems are

much more suitable for GPU computing than others, as

we will discuss in the next section of the paper.

2. Reference CPU count

What is the base CPU core count for the benchmark?

The same use case might show a different gain factor if

compared to a single CPU core or multicore run (typical

for compute-heavy problems).

3. Quality of the reference CPU code

Level of optimization of the original CPU code. Often, the

GPU code is written by more performance-aware

developers and is simply better than legacy CPU code. In

some cases, significant performance gains could be

achieved just by refactoring the original CPU code.

4. GPU used

What generation and type of GPU is used in the

benchmark? As shown in Figure 1, there are significant

performance differences between GPU devices, so a

benchmark from 2012 would likely underestimate today’s

potential gains.

5. Sample bias

Use cases with higher performance gains are more likely

to be published or publicized.

4. TechPowerUp. (n.d.). NVIDIA Tesla P100 PCIe 16 GB. Retrieved September

24, 2025, from https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-

gb.c2888.

https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 4

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

Bearing in mind the above, it is true that GPUs can provide a

hundredfold increase in performance. In many cases, the gain

factors will be lower, however, either because of the nature of

the problem itself or because of the implementation on the

GPU. As with CPUs, there can be a substantial difference

between “GPU code” and “efficient GPU code,” and the latter

requires a deep understanding of the GPU architecture. We will

touch upon this topic in the last section of this paper.

In Figure 3, we present selected examples of speed-ups across

different application areas that have been described online.

FIGURE 3: EXAMPLE SPEED-UPS IN REAL-WORLD APPLICATIONS

USE CASE
CPU

CORES

GPU

USED

SPEED-

UP

Protein structure

inference5
128 NVIDIA L40S 177x

Graph community

detection6
112 NVIDIA H100 47x

Simulating stock

market mid-price for

HFT7

N/A NVIDIA H200 114x

Weather forecasting

(WRF-WSM5)8
1 NVIDIA C2050 403x

Data sources: See footnotes.

There is also an interesting presentation available on the

NVIDIA website9 highlighting performance gains across many

use cases in various domains (biology, chemistry, physics)

from using GPUs. However, as it was last updated at the end

of 2012, the numbers would likely be very different when

reevaluated on today’s GPUs.

Suitability for GPU processing
We have already indicated in the earlier sections of this paper

that some computational problems are more suitable for GPU

processing than others. Although the “best” group might exhibit

performance improvements of hundreds of times, the “worst”

will very likely show performance deterioration.

5. Technical Blog. (2025, September 10). Accelerate protein structure inference

over 100x with NVIDIA RTX PRO 6000 Blackwell server edition. NVIDIA

Developer. https://developer.nvidia.com/blog/accelerate-protein-structure-

inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/.

6. Technical Blog. (2025, September 23). How to accelerate community detection

in Python using GPU-powered Leiden. NVIDIA Developer.

https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-

python-using-gpu-powered-leiden/.

7. Technical Blog. (2025, March 4). GPU-accelerate algorithmic trading

simulations by over 100x with Numba. NVIDIA Developer.

https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-

industry/gpu-accelerate-algorithmic.

Three main elements are key in determining if a given problem

is worth the while implementing on a GPU:

FIGURE 4: KEY ASPECTS OF GPU SUITABILITY

1. Data size

There needs to be sufficient data to saturate thousands of

GPU cores and offset the cost of transferring it to the

device VRAM. At the same time, the problem ideally

should be more compute-intensive than data-intensive.

2. Independence of calculations

Ideally, the calculation for each data element should be

independent of the other elements.

3. Degree of code branching

The code executed in parallel should be as uniform across

GPU cores as possible. Many conditional paths that

depend on data might decrease performance.

The first aspect relates to the fact that there is a (quasi-)fixed

cost of initializing calculations on the GPU. If the problem is too

small, the initialization itself will take longer than solving it on a

CPU, so the performance will be, in fact, worse. A dominant

component of that initial cost can be the transfer of data to the

dedicated memory of the GPU. Even though RAM is

considered to be the fastest possible data storage option,

transferring data between the host (general computer RAM)

and the device (GPU RAM) introduces latency that becomes

significant if subsequent compute times are too short.

The second aspect is directly related to the GPU architecture.

As mentioned, the GPU consists of thousands of computational

cores, and its power therefore lies in its being able to process

calculations in a massively parallel way. If calculations on

different cores must stop and wait for other cores to exchange

information, or if not enough cores are able to process the

calculations simultaneously, this will leave the GPU

underutilized and therefore not efficiently used. The best

problems for the GPU will consist of many independent atomic

calculations, each of which can be completed by a single GPU

core—such as independent Monte-Carlo simulations, modeling

individual policies, or performing the same element-wise

calculation on large arrays of data.

8. Ridwan, R., Kistijantoro, A. I., Kudsy, M., & Gunawan, D. (2015). Performance

evaluation of hybrid parallel computing for WRF model with CUDA and

OpenMP. IEEE Xplore. https://ieeexplore.ieee.org/document/7231463.

9. Berger, M. (2012, December 21). NVIDIA computational chemistry & biology.

NVIDIA. https://www.nvidia.com/docs/IO/122634/computational-chemistry-

biology-benchmarks.pdf.

https://developer.nvidia.com/blog/accelerate-protein-structure-inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/
https://developer.nvidia.com/blog/accelerate-protein-structure-inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/
https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-python-using-gpu-powered-leiden/
https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-python-using-gpu-powered-leiden/
https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-industry/gpu-accelerate-algorithmic
https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-industry/gpu-accelerate-algorithmic
https://ieeexplore.ieee.org/document/7231463
https://www.nvidia.com/docs/IO/122634/computational-chemistry-biology-benchmarks.pdf
https://www.nvidia.com/docs/IO/122634/computational-chemistry-biology-benchmarks.pdf

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 5

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

When some inter-dependency exists between data cells, it is

still possible to utilize the GPU and achieve significant

improvements in performance, but typically the benefits will be

less prominent than in completely independent cases. In

programming terms, map() operations (such as multiplying

each element by a factor, where the dimensions of the input

and output are the same) tend to be more efficient on GPUs

than reduce() operations (such as performing a group-by

aggregation of the elements, where the dimension of the input

exceeds the dimension of the output). Reduce-type operations

might have to be reformulated to take maximum advantage of

the parallelization to become truly efficient on GPUs.

Finally, the third aspect refers to a more technically detailed

feature of GPU—the way calculation execution is organized.

Without getting into too much technical detail, the performance

of a GPU will be best if individual calculation cells follow the

same (or very similar) linear path of execution. If the calculation

contains many “if-elseif-else” statements, creating a lot

of possible branches, execution performance will deteriorate.

This is because certain groups of GPU cores must start and

end their computations at the same time, and moreover,

synchronization points for those cores must occur at the same

point in the code. In the best case, this might result in some

cores waiting for the ones with longer execution branches; in

the worst case, the wait might be indefinite if some branches

do not converge to the synchronization point. We take a look at

the tip of the iceberg related to these more technical topics in

the next section.

GPU architecture fundamentals
Until now, we have only scratched the surface of the GPU

architecture. In this section, we will take a slightly deeper look

at this, as efficient use of GPUs for modeling requires an

understanding of their architecture. This is by no means an in-

depth or complete explanation, but it presents a few selected

key concepts in a simplified way.10

As mentioned earlier, a single GPU consists of thousands of

cores (in NVIDIA GPUs, also called ‘CUDA cores’). These are

physically organized on the GPU into streaming

multiprocessors (SMs), subdivided into streaming processors

(SPs). Cores in a single SP share control logic and in a single

SM share a dedicated on-chip memory (called shared

memory), significantly faster than the global off-chip VRAM.

The number of SMs and cores per SM, as well as the amount

of shared memory available in each SM, varies between

different models and generations of GPUs.

10. For a comprehensive overview, see Nvidia CUDA toolkit documentation.

Retrieved December 3, 2025, from https://docs.nvidia.com/cuda/.

As indicated previously, modern GPUs have even more types of

cores present, specializing in different types of calculations. The

exact types and numbers vary by GPU architecture and model.

Figure 6 shows a simplified architecture of a single processor of

an NVIDIA Ampere GPU (A100) streaming multiprocessor with

(among others) 16 INT32, 16 FP32, 8 F64, and a tensor core for

the aforementioned FMA matrix operations. A single SM in this

architecture has 4 processors like the one depicted and includes

some additional special functions units (SFU, e.g. for

trigonometric function calculation) in each.

FIGURE 6: NVIDIA A100 STREAMING PROCESSOR ARCHITECTURE

(SIMPLIFIED)

When a computation unit (also referred to as a CUDA kernel) is

executed on a GPU, it is mapped to a set of fundamental GPU

execution units—threads. Disregarding, for the sake of this

explanation, more complex cases, we can assume that a single

thread corresponds to a single CUDA core on a single data

element on which computations are to be performed. These

threads are organized into a thread grid and subdivided into

thread blocks. The number of threads in a block and the

number of blocks in a grid are parameters determined by the

program invoking GPU computations. Based on these

parameters and the hardware limitations of the specific GPU

device used, thread blocks are allocated and queued to SMs

for execution.

Streaming Processor

INT32

INT32

INT32

INT32

INT32

INT32

INT32INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32INT32

FP32

FP32

FP32

FP32

FP32

FP32

FP32FP32

FP32

FP32

FP32

FP32

FP32

FP32

FP32FP32

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

Tensor Core

Register file (16384 x 32bit)

Warp Scheduler / Dispatch Unit (32 threads/cl)

L0 Instruction Cache

L1 Data Cacge (Shared Memory) / L1 Instructor Cache

https://docs.nvidia.com/cuda/

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 6

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

FIGURE 7: ORGANIZATION OF THREADS INTO BLOCKS AND GRID

Subdivision into blocks is important because threads in the

same block enjoy several privileges that threads from separate

blocks do not, as they are executed on a single SM. First,

threads within one block all have access to the same shared

memory of the SM and can exchange information this way.

Second, they can introduce a certain level of dependency

between otherwise independent threads by being able to wait

at a specific point in the code that calls for synchronization and

to continue only after all of them have reached that point, a

technique known as barrier synchronization. This allows all

threads in the block to occasionally update shared information

that could be used as input to the next stage of parallel

calculations. Another element shared by the threads in one

block is a register file, which is a dedicated, fast on-chip block

of memory to store local variables for each thread.

An important concept in understanding parallelism on the GPU

is a thread warp. This is the smallest group of threads that is

executed simultaneously in an SM. For all NVIDIA GPUs to

date, the size of this group has been set to 32 threads, but

based on the documentation, it can be changed in the future.

To achieve maximum performance, all threads in a warp can

only execute the same instruction at any given time (although

on different data elements). However, this becomes a

constraint if the code execution in different threads diverges.

Divergent threads in a single warp decrease efficiency, as

those threads must wait for each other as different code

branches are executed. This is the reason GPU code should

be as uniform as possible across threads, and at the very least

ensure that data elements with different operations (e.g., if-else

branches) are not executed in the same warp.

Last, but not least, is the matter of memory use. Many types of

memory must be considered when dealing with a GPU; not

understanding the differences has the potential to significantly

degrade performance of the code. The first major difference is

the speed of the general-purpose computer RAM and the GPU

VRAM. Nowadays, the former is typically a DDR5 type of

memory, whereas in GPUs, this differs between GDDR6 (in

consumer GPUs) and HBM2/HBM2e (in server GPUs). Even

though RAM is customarily considered the fastest data source

in a computer, as shown in Figure 8, GPU memory is roughly

10x–20x faster. This should clarify why managing the transfers

between RAM and VRAM is such a critical area to optimize

when aiming for high performance.

FIGURE 8: MEMORY THROUGHPUT COMPARISON (GB/S)

Data source: BittWare Article, Comparing DDR4 and DDR5 Memory. Bandwidth for FPGA Accelerator Cards1112

11. BittWare. (n.d.). Comparing DDR4 and DDR5 memory bandwidth for FPGA

accelerator cards. https://www.bittware.com/resources/ddr4-and-ddr5-

performance-comparison/.

12 Double appearance of DDR4-2400 with different results is due to single-

channel (lower result) and dual-channel (higher result) configuration.

Grid

…

Block

...

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Block

...

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Block

...

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Block

...

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Block

...

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Block

...

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Block

...

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

Th

820

460448

44.851.238.419.2

0

300

600

900

HBM2eHBM2GDDR6DDR5-5600DDR4-3200DDR4-2400DDR4-2400

10x

18x

https://www.bittware.com/resources/ddr4-and-ddr5-performance-comparison/
https://www.bittware.com/resources/ddr4-and-ddr5-performance-comparison/

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 7

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

However, the VRAM throughput of the global GPU memory is

still considered very slow in GPU computation. Depending on

the specific GPU considered, shared (and register) memory

bandwidth can reach more than 12,000 Gb/s13 (for Nvidia V100

GPU, newer GPUs have an even better performance), which is

another 15x faster than VRAM. It is worth noting that the

capacity of global memory in a GPU is usually measured in

gigabytes, whereas each SM’s shared (and register) memory is

only several hundred kilobytes, so their memory usage models

are very different.

As mentioned at the start of this section, this overview barely

touches the tip of the iceberg representing GPU architecture,

its constraints, and dependencies. For readers interested in a

more extensive and technical description, we recommend

more detailed material available, for example, in NVIDIA’s

CUDA Programming Guide. A thorough understanding of

these concepts is a prerequisite for writing a truly performant

GPU code.

Actuarial problems and GPUs
There are a variety of computationally intensive problems

actuaries encounter for which a GPU may offer performance

improvements. The primary factors that determine the

suitability of a problem for a GPU have been discussed. In this

section, we will describe general types of problems in actuarial

science and a variety of problems that we have implemented

on a GPU.

ASSET–LIABILITY MANAGEMENT

A broad category of modeling in the insurance industry is asset-

liability management (ALM). The examples that follow illustrate

the usage of a GPU to model assets, liabilities, or both. A more

complicated aspect of ALM modeling is when there is an

interdependence between assets and liabilities. There are

several approaches to designing such a model. The two most

common in Europe are full ALM (also called dynamic) and

flexing-based ALM. The former relies on modelling liabilities and

assets period by period and directly including the effects of one

side on the other. That requires aggregation and allocation

calculations in each period. As mentioned in an earlier section,

this kind of reduce operation scales less efficiently for

parallelization than simple map operations. This compounds the

time-dimension interdependency already present in the liability

cash flow projection modeling. This kind of model is also typically

very memory-intensive, as it requires all liability and asset

information to be kept in memory during all calculations.

13. Jia, Z., Maggioni, M., Smith, J., & Scarpazza, D. P. (2019, March 18).

Dissecting the NVidia Turing T4 GPU via microbenchmarking. Citadel, 34.

https://arxiv.org/pdf/1903.07486.

Flexing approach, on the other hand, allows first projecting the

deterministic base liability cashflows (e.g., before any impact

from market-related factors, such as profit-sharing) for the

whole projection period and then applying factor-based scaling

(flexing) to these cashflows based on specific investment

results from each stochastic economic scenario, period by

period. This approach requires a sacrifice of some precision, as

it is typically done at an aggregate level of liability cash flows

(e.g., product/technical guarantee rate level), but is less

memory- and computation-intensive. It also removes one of the

dependencies and the need to aggregate–allocate at each step

of the calculations, which makes it notably more suitable for

GPU computations. A similar approach for assets could be

considered, in which gross asset cash flows are pre-projected

independently, aggregated to the granularity of an

investment/disinvestment algorithm, and potentially scalar

overlays such as defaults. Then, factor-based scaling is applied

based on projected purchases, sales, and defaults.

The general problem with a complete ALM calculation chain for

GPU computations is that, even with the flexing approach,

there are still many very diverse calculations. This departure

from uniform and linear flow across threads (in the same warp)

is far from ideal and poses significant challenges to an efficient

GPU implementation. It is, of course, possible to implement the

complete flow on a GPU, or to select the most computationally

intensive parts for GPU execution while keeping the higher-

level flow on CPU. One could also try to reformulate the typical

ALM approach to better fit the GPU paradigms.

For one of its clients in France, Milliman has built a simplified

prototype ALM model supporting both flexing and full dynamic

approaches and running both on CPU and GPU. In our

benchmark results for the client, we saw around 10x

performance increase over a comparable multi-CPU run

(based on eight cores, 2,000 stochastic simulations, 100k

policy portfolio, and 5,000 asset portfolio and flexing model).

This was based on a very naïve CPU-to-GPU code

conversion without any specific optimization around, for

example, memory transfers or GPU architecture, as this time-

boxed experiment was ancillary to primary project objectives.

We also observed that for some parts of the calculations,

performance improvements were significantly higher

(reducing runtime by up to 95%, e.g., economic scenario data

transformations or generating outputs), whereas for others,

those improvements were much smaller (reducing runtime by

only around 50%, e.g., aggregations of liability cashflows or

setting up model structure).

https://arxiv.org/pdf/1903.07486

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 8

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

Life liability products
A broad class of problems that fit the GPU model well is

creating cash-flow projections of life insurance liabilities. If a

company wants to do it at the most detailed level—policy or

coverage—this will mean millions of policies projected over

several decades. Such models can be quite heavy to run, even

without involving stochastic scenarios (which could be applied,

for example, to mortality or market data, and therefore increase

both complexity and computational requirements). Even a

simple liability cashflow projection model has one potential

drawback for GPU conversion, as there is an interdependency

within the projection along the time dimension (i.e., values at t

are based on values at t-1), which, to some extent, limits the

principle of independence of atomic calculations submitted to

GPU threads.

We have a few examples of this type of modeling in subsequent

sections of this paper. One can also explore a simplified case,

such as this 2023 Milliman White Paper, “Building a high-

performance in-house life projection and ALM model:

Architecture and implementation considerations in Python.”14

The focus of that paper was different, but it also shows a 20-fold

increase in performance after translating the model into GPU-

enabled code (for a sample size of 0.5 million policies).

VARIABLE ANNUITIES

A Variable Annuity (VA) is a life insurance product, often with

embedded options, that has exposure to the capital markets.

Essentially, a VA is a tax-advantaged way to invest in the

market, often with guarantees to protect the policyholder from

downside risk.

Management of a block of VAs has high computational

demands due to risk management and financial reporting

requirements that require projecting cash flows for both risk-

neutral and real-world simulations over many economic

scenarios. The payoff profile of a VA is path-dependent, which

creates interdependence in the time dimension, limiting that

aspect of parallelism.

Here are some examples of the types of metrics companies

may need to run:

 Risk-neutral valuations for market sensitivities for

hedging, pricing, and/or reserving

 Real-world simulations for statutory reporting and

capital calculations

 Stochastic-on-stochastic simulations to test hedging

strategies, run plan scenarios, and/or generate results

of a clearly-defined hedge strategy (CDHS) for

financial reporting

14. Maciejewski, K., Echchelh, M., & Sznajder, D. (2023, March 13). Building a

high-performance in-house life projection and ALM model: Architecture and

implementation considerations in Python. Milliman.

https://www.milliman.com/en/insight/building-in-house-projection-alm-model-

python.

VA is a separate account product that typically has little general

account exposure at the contract level, resulting in minimal

interdependence between contracts for most types of runs. As

such, the data set is highly parallelizable for many of the

intense computational workloads that insurers need to

generate. We have built GPU models for stochastic-on-

stochastic, risk management, hedge simulation, and financial

reporting in both C++ and Python with Numba.

FIXED INDEX ANNUITIES

The Fixed Index Annuity (FIA) is another type of annuity in the

life insurance space that has capital markets exposure. As with

the VA, the FIA has path dependence and metrics that require

projection of liability cash flows. Historically, risk management

of these products was the primary computationally intensive

metric, but the advent of VM-22, a U.S. principles-based

reserving framework requiring valuation under stochastic real-

world scenarios, has added additional areas of heavy

computational demand.

Unlike VA, FIA is a general account product that may add an

additional layer of complexity from a modeling perspective,

discussed in the ALM section above. For some types of runs,

the evolution of the general account in aggregate is necessary

to capture at a policy level. This additional layer of dependence

between the contracts reduces parallelism. The degree to

which this may impact GPU throughput will be dependent on

the number of contracts and/or scenarios being run and the

number of times the calculation requires synchronization

across contracts.

Our experience modeling FIA on GPUs has been focused on

risk management and hedging using models built in C++. For

this paper, we built a toy model in Python/Numba to simulate

pricing an FIA with a Guaranteed Lifetime Withdrawal Benefit

(GLWB) in the VM-22 framework.

The model is not fully developed from an assumptions and

product feature perspective, but is a means of looking at

relative impacts of modeling decisions and constraints. All FIA

simulations are for 50 years at a monthly frequency over 1,000

real-world scenarios. The model was run on a CPU and GPU

using Python with Numba.

Several observations from this exercise illustrate points

highlighted elsewhere in this paper. In particular, this exercise

gives a sense of how the design of the implementation may

change as the problem evolves, the impact of memory layout,

and how reducing parallelism can impact performance.

https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python
https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 9

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

The runtime comparisons that follow are based on this model

and are on machines from Azure that are running the Linux

operating system:

 Standard_HB176rs_v4, a high-performance CPU VM with

176 CPU cores priced at $7.20 per hour

 Standard_NC80adis_H100_v5, sporting two H100 GPUs

priced at $13.96 per hour

All runs are double precision (float64) and do not include

input/output or compile time in the runtime. The GPU execution

time includes memory transfer to and from the GPU. It should

be noted that this model is only utilizing only one GPU since it

is not equipped to utilize multiple GPUs.

Figure 9 shows results under the assumption that the contracts

have no interdependence. In other words, each policy is

completely independent of any other policy. With that in mind,

this run is a single kernel call to the GPU to calculate all

policies, scenarios, and timesteps.

FIGURE 9: FIA PRICING BENCHMARK CPU TO GPU COMPARISON

(EXECUTION TIME)

POLICIES

CPU

(172 CORES)

GPU

(1 GPU) RATIO

32 0.05 0.01 3.98

128 0.14 0.02 6.47

1280 1.03 0.12 8.52

20480 15.91 2.67 5.95

81920 63.82 10.24 6

The results demonstrate that even for a small number of

policies, the GPU shows a runtime improvement over the CPU.

Although the number of policies is small, each policy accounts

for 600,000 iterations through the logic (scenarios × timesteps).

The CPU and GPU both exhibit a nonlinear response to the

increase in policies initially since neither is saturated with a

small number of policies. As the number of policies increases,

both the CPU and GPU timings scale approximately linearly

and approach a sixfold relative performance improvement of

the GPU relative to the CPU.

The next part of the exercise is to consider what happens if

there is dependence between the policies. This is the type of

complication that one would encounter when simulating

dynamic asset modeling, as described in the ALM section. To

accomplish this, we will run the kernel multiple times to move

the policy information along each scenario for a specific

number of timesteps, and then return control to the CPU. We

want to store the state of each policy by scenario on the GPU

to avoid unnecessary data transfers.

The implementation of the above model loaded a single

representation of the policy data in global memory. For this

exercise, however, we need to store each policy by scenario to

capture the policy state between kernel calls. In the initial

version, the model reads the policy data from global memory

and loads it into local data structures. This design reduces the

number of calls to global memory, but to accommodate this

exercise would necessitate an explicit update of the information

in global memory to capture the state when the kernel cedes

control back to the CPU. To avoid an explicit update and

repeated loading into the local memory structures, the model

was adjusted to operate directly on data from global memory. A

comparison of the original implementation to the new version is

shown in Figure 10.

FIGURE 10: FIA PRICING BENCHMARK IMPLEMENTATION COMPARISON

(EXECUTION TIME)

POLICIES ORIGINAL ALTERNATIVE

PERCENT

INCREASE

32 0.01 0.09 612%

128 0.02 0.20 848%

1280 0.12 1.82 1405%

20480 2.67 28.74 975%

81920 10.24 114.79 1021%

The impact of the implementation change was an increase in

runtime by almost 11 times. This reduction in performance is

likely tied to two related things. The new model has many

more calls to global memory than the previous version, and

the memory layout in global memory for the policy data

structure is not implemented in a way to facilitate coalescing

of memory. It is possible to alter the way the policy data is

stored and used, but the resulting implementation would be

tedious and less maintainable.

The final version of the model for this exercise was a hybrid of

the original and proposed models. We reverted to utilizing local

storage to minimize calls to global memory and added logic to

update an expanded representation of the policy data in global

memory. The result was performance in line with the initial

version of the model.

With this new version in place, we returned to the exercise and

ran the model with varying frequencies of checkpoints. The

label “Frequency” in Figure 11 is the frequency at which we

returned control to the CPU. At the end of each call to the

kernel, we copied the entire results data structure back to the

CPU to emulate possible methods for implementing the asset

strategy. We moved the results from the GPU back to the CPU

to account for the possibility that the CPU would run the asset

strategy. If the asset strategy were also run on the GPU, there

would be no need to move the results to the CPU. Figure 11

shows the percentage increase in runtime when simulating the

flow of control at varying frequencies to run an asset strategy.

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 10

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

FIGURE 11: FIA PRICING BENCHMARK CPU CHECKPOINT FREQUENCY

(EXECUTION TIME)

FREQUENCY TIME (S) PERCENT INCREASE

None 14.59 0%

Annual 58.18 299%

Quarterly 85.53 486%

Monthly 123.47 746%

The reduction in performance is from the transfer of data back to

the CPU and the reloading of data from global memory to the

local data structures. The impact of the latter would be reduced

by the restructure of the policy data contemplated above.

ASSET VALUATIONS AND HEDGING

Another example from the area of asset–liability and risk

management is the valuation of assets in an insurance

company’s portfolio. Nowadays, companies perform a quickly

increasing number of projections for various purposes:

 Best-estimate calculations for products with financial

profit-sharing

 Risk-based capital calculations

 Sensitivities for hedging and capital optimizations

For this paper, we have developed a simple engine for bond

market valuation using the discounted cash flows approach. It

can be shown that this problem fits the criteria of GPU-

suitability very well.

Typical bond portfolios held by life insurance companies vary

from several hundred to thousands of individual instruments,

with more added in each projected reinvestment cycle to reflect

the simulated purchases. Each bond needs to be valued at

each projection step until its maturity and typically across a

number of stochastic scenarios. Therefore, the dimensionality

of the problem (data size) grows quickly: [bonds x

projection steps x scenarios].

Valuation of each cell of this array can be considered

independent of the others. One might argue (and rightfully so)

that, at least in some cases, fixed-rate bond cash flows from

one projection step to another remain largely unchanged and

can be reused. This can be considered, however, one case for

which the benefit of independence is bigger than the efficiency

of performing each calculation exactly once. The simplicity of

the implementation and performance gain outweigh the need to

repeat the cash flow calculation.

The third key element—code branching—is also limited. Each

bond has a different maturity term, so although the exact

number of computations in each cell varies, the logic of the

calculation flow remains uniform and linear.

In the valuation engine developed for this paper, we have

made several simplifying assumptions, which facilitated the

development without impacting the observations and

conclusions:

 We used fixed-coupon bonds only

 We generated random discount factors

 We performed valuations annually from start of the

projection until maturity of the last bond in the portfolio

For the benchmark exercise, we used a dummy bond portfolio

with an average term-to-redemption of 20 years (maximum 40

years, minimum 1 year), a fixed coupon payment, and varying

coupon payment frequencies (from monthly to annual). The

sample size mentioned in the following figures refers to the

(rounded) total number of market value calculations (equal to

the product of three dimensions: number of bonds, number of

stochastic simulations, and number of years until maturity for

each bond). As an example, the 10-million sample corresponds

to 550 bonds, 960 simulations, and an average of 19.4 years

until maturity (giving a total of 10,243,200 calculations).

The implementation was done in Python using Numba (for

both CPU and GPU variants), using single precision (float32)

and Fortran-ordering of array elements in memory (which, in

our implementation, facilitated splitting arrays in the multi-

GPU context).

For the main part of benchmarking this use case, we used a

machine with an EPYC 7402P CPU, 256GB RAM, and 4x

NVIDIA Tesla P100s with 16GB VRAM each. For the test runs,

we used different combinations of CPU cores and GPUs, as

well as various sample sizes. The P100 is a relatively old

generation of GPU (based on the Tesla Pascal architecture,

introduced in 2016), so we also include the computation time

for a modern H100 GPU with 80GB VRAM, provisioned from a

specialized GPU-cloud instance provider.15

We timed the execution on the host side using the standard

Python time library, where relevant, and, where possible, split

the total execution into loading data into VRAM, pure

computations, and retrieving results from VRAM. Loading data

from disk and generating discount factors are not included in

the results.

15. See the RunPod homepage page at https://www.runpod.io.

https://www.runpod.io/

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 11

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

FIGURE 12: BOND VALUATION BENCHMARK (TOTAL EXECUTION TIME IN SECONDS)

SAMPLE SIZE 1 K 10 K 100 K 1 MLN 10 MLN 100 MLN 1 BLN 10 BLN16

CPU: 1 core 0.0012 0.0097 0.0862 0.8518 8.5158 85.0788 849.2658 8562.08

CPU: 16 cores 0.0028 0.0030 0.0226 0.1891 1.5362 15.0580 147.3351 1462.8326

GPU: 1x P100 0.0048 0.0069 0.0094 0.0429 0.0753 0.4087 3.8794 N/A17

GPU: 4x P100 0.0098 0.0090 0.0082 0.0151 0.0439 0.2114 1.6167 16.1857

GPU: 1x H100 0.0019 0.0028 0.0039 0.0171 0.0355 0.2899 2.8836 27.2149

FIGURE 13: BOND VALUATION BENCHMARK (COMPUTATION ONLY, TIME IN SECONDS)

SAMPLE SIZE 1 K 10 K 100 K 1 MLN 10 MLN 100 MLN 1 BLN 10 BLN

CPU: 1 core 0.0012 0.0097 0.0862 0.8518 8.5158 85.0788 849.2658 8562.08

CPU: 16 cores 0.0028 0.0030 0.0226 0.1891 1.5362 15.0580 147.3351 1462.8326

GPU: 1x P100 0.0007 0.0002 0.0005 0.0029 0.0245 0.2285 2.2136 N/A

GPU: 4x P100 0.0044 0.0015 0.0029 0.0025 0.0236 0.1213 0.8373 9.7637

GPU: 1x H100 0.0003 0.0003 0.0003 0.0008 0.0064 0.0621 0.6181 6.1683

FIGURE 14: PERFORMANCE IMPROVEMENT GPU TO CPU X16

16. Due to very high volatility of the time required to initialize the GPU and return control to the CPU, the number in the last row of this column has

been calculated as a proxy using actual memory transfer times and calculation time, and an average overhead from 1 billion sample runs.

17. A single P100 GPU with 16 GB VRAM is not able to handle that much data.

4
.0

5

6
.5

4

2
3
.8

0 3
8
.6

3

3
9
.8

3

0
.0

0

2
.6

1 1
1
.8

3

5
6
.0

8 7
5
.8

4

8
2
.4

1

8
5
.3

0

5
.8

4

1
1
.0

8

4
3
.2

4

5
1
.9

4

5
1
.0

9

5
3
.7

5

0

25

50

75

100

100 k 1 mln 10 mln 100 mln 1 bln 10 bln

GPU to CPU x16 (total execution)

1x P100

4x P100

1x H100

4
6
.3

8

6
4
.2

0

6
2
.5

2

6
6
.8

4

6
6
.5

2

0
.0

0

3
.3

9

1
3
.6

6

7
2
.6

3 1
2
0
.1

6

1
2
1
.0

7

1
2
6
.0

0

8
9
.9

7

2
2
3
.7

5

2
4
0
.1

8

2
4
2
.4

0

2
3
8
.3

7

2
3
7
.1

5

0

50

100

150

200

250

300

100 k 1 mln 10 mln 100 mln 1 bln 10 bln

GPU to CPU x16 (computation only)

1x P100

4x P100

1x H100

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 12

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

Figure 12 presents an overview of the results in terms of total

execution time, and Figure 13 presents the results in terms of

pure computation time (which is the same in the case of CPU-

based benchmark; we excluded the disk to general memory

loading time, as it is the same regardless of CPU or GPU being

used. It is worth noting that in the case of computing resources

provisioned in the cloud, these fixed overhead times, including

the time it takes to boot up and prepare a virtual machine for

calculation, will be more expensive for the GPU machine, given

that it would typically have a higher cost per unit of VM uptime.

Figure 14 shows comparative graphs of performance

improvement factor between various GPU runs and the

corresponding 16-core CPU run, which we believe is more

representative and realistic than running on a single core. From

this overview, we can clearly see that for small samples, the

benefits of using a GPU are small, as the overhead related to

the GPU initialization and use overshadows the pure

computational benefit. For this model, it seems a sample size

between 10 and 100 million bond valuations is required to

realize stable execution times, reflecting a performance

improvement of approximately 40x for the older P100 GPU and

50x for the newer H100. However, when looking at pure

computational time, excluding data transfer times, we see that

at only approximately 1 million calculation cells, a stable level

of around 65x improvement is reached on the P100 GPU and

an impressive factor of 240x on the H100 GPU.

In a multi-GPU context, it is important to mention that there are

different ways multiple devices can be utilized to distribute

calculations. The approach used in this benchmark was to

create separate CPU threads (using the standard Python

threads library), one for each GPU device, and let each thread

manage the transfer of its relevant chunk of data, the CUDA

kernel invocation, and the transfer of the results back to

general RAM. The final step was to put the partial results

together into a single array to align the final output with the

single-GPU and -CPU cases.

The benefits observed when using multiple GPUs were

higher, as expected, but did not demonstrate perfectly-linear

scaling with the number of GPUs18, suggesting an increase in

the overhead when working with several devices. In terms of

total execution, a stable point seems to be achieved between

100 million and 1 billion cells (25 million and 250 million per

GPU) at an improvement factor of around 80x. In terms of

pure computation, there is apparently a bit more stability, with

the improvement factor increasing to reach 120x for 100

million samples.

18. A point worth noting—this is also in line with what has been observed when

increasing the CPU core count.

Keeping in mind that these are factors of improvement over a

16 core CPU run, and even taking into account the time spent

on data transfers between memory types, these results still

show an very impressive performance gain that would bring a

model runtime of 1 hour to just over 1.2 minutes given a single

modern GPU (and 1.5 minute given a cheaper, older GPU).

Achieving the same result using a CPU grid would require

utilizing almost 600 cores!

Using multiple GPUs in parallel will likely be overkill for most

actuarial workloads, but it can help when the data size exceeds

the capability of a single GPU (as was the case with the 10-

billion-sample dataset in this benchmark). Even then, an

alternative is to split the data into chunks and submit the

calculations to the same GPU in a sequence. Moreover, with

modern server-grade GPUs having memory of 100+ GB,

memory exhaustion on a single device by actuarial model data

is unlikely.

The implementation of this benchmark case was done in a

relatively “naïve” way, as far as GPU optimizations are

concerned. As we will discuss in the next section, there is

potential for significant improvement if GPU architecture-

specific details are taken into account while fine-tuning the

code. Similarly, CPU performance could be enhanced using

optimizations targeted at specific hardware topology and

microarchitectural elements of high-performance machines.

Each requires a substantial amount of highly technical

knowledge, which is likely unknown to even the most tech-

savvy actuaries. Therefore, we see this simple approach as

more realistic for an actuarial modelling use case.

Efficient GPU modeling
The technical expertise required to utilize GPUs has diminished

over time with advances in CUDA and with the accessibility of

CUDA through high-level languages. The need for advanced

technical expertise to efficiently utilize a GPU persists for many

actuarial applications. The value added from tuning a GPU falls

on a spectrum that is dependent on the problem. There are

instances where converting a CPU implementation of a model

to a GPU implementation is straightforward, and tuning may

only result in modest performance gains. On the other end of

the spectrum, tuning may deliver substantial gains in

performance and cost reductions. Some aspects of utilizing a

GPU efficiently are related to understanding the structure and

mechanics of a GPU processor. There are other aspects of

tuning that center around how to best implement a calculation

to optimize parallelism for a specific use case. There are

instances where the optimal way to use a GPU is not optimal

for a CPU.

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 13

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

Different levels of understanding the technical aspects of a

GPU architecture enable several relatively “standard”

optimizations that are widespread in more sophisticated GPU

use cases. The simplest example is choosing the right shape of

the thread grid—in particular, the number of threads per block.

Recall from our earlier discussion on thread warps that 32 is

the minimum number of threads that can be executed

simultaneously in a block. Therefore, best practice is to use a

multiple of 32 as the number of threads in a block, thereby

eliminating “empty” threads. Additionally, each GPU imposes a

maximum on the number of threads per block (typically 1,024

or 2,048). Clearly, these two constraints still leave a wide range

of possible warp sizes.

There is no single recipe for an optimal number; depending on

the computational problem at hand and the specifications of

the GPU used, different values might be the best in different

cases. The relevant individual GPU specifications include,

among others, the maximum number of blocks per SM, the

maximum number of threads per SM, and the amounts of

shared and register memory per SM. Finding the optimal

choice is to seek a balance between occupancy maximization

and memory bandwidth optimization. Occupancy is a measure

of how many threads (or warps) are active in an SM at any

given time, compared to the theoretical limit. This is important

because it keeps the utilization of the SMs high and allows for

latency hiding, which is a technique that allows the GPUs to

quickly switch from threads that are stalled (waiting, e.g., for

memory operation) to others that can perform their operations

and, in that way, minimize the effect of some bottlenecks. On

the other hand, there are limits on shared and register memory

sizes on each SM. The more threads are executed on an SM,

the less memory is available per thread, which might increase

latency due to additional global memory access required.

Another way to minimize latency and increase performance is

to use streams. They allow for a certain degree of

asynchronous operations on the GPU—simultaneously

executing kernel invocations and memory transfers between

the host and GPU, as well as independent kernel executions to

run in parallel. Minimizing bottlenecks and ensuring maximum

GPU load can ultimately be quite a challenging task.

Fortunately, there are sophisticated tools, such as NVIDIA

Nsight Compute19 for CUDA workflows, that can analyze

workload performance and generate guidance on how to

potentially optimize it.

It is also important to understand the GPU features that are

available on the device one is using and how those features

can be accessed in different programming languages and their

libraries. Some will allow greater control over technical

19. See the NVIDIA Nsight Compute product page at

https://developer.nvidia.com/nsight-compute.

execution parameters, and some provide additional tools. An

example of this can be GPU Direct Storage (GDS),20 which is a

toolkit that enables direct data transfers between the GPU and

data storage. This allows skipping the CPU and general system

RAM when reading and writing files, significantly speeding up

input-output operations. In the aforementioned example of a

prototype ALM model built for a French Milliman client, we saw

a 12x decrease in the time required to generate result files after

enabling Direct Storage for this step.

A prime example of a more complex optimization is memory

coalescing. When different threads of the same warp request

data from the global GPU memory, the time it takes the GPU

to fulfill those requests depends on where the data are

physically located in memory. In the best case, requested

data cells are adjacent to each other, and, as a consequence,

can be provisioned back to threads all at once. However, if

those cells are spread in different parts of memory, it will take

several cycles to collect all of them and ultimately fulfill the

warp request. Memory coalescing ensures threads within the

same warp access data that are adjacent in global memory.

When one is working with multidimensional numerical arrays

(as is typically the case in the GPU context), ensuring the

right alignment between threads and data cells in the array

boils down to understanding the C-style versus Fortran-style

memory order and accessing the arrays accordingly. In C-

style convention, 2D arrays are stored in memory in row-

major order, meaning elements of a single row are next to

each other in memory. In Fortran-style convention, things are

reversed, and column order is used, putting elements of the

same column next to each other in memory. In higher

dimensions, that arrangement corresponds to the innermost

index changing most quickly (row-major memory

representation) and the outermost index changing most

quickly (column-major memory representation).

FIGURE 15: ROW- VERSUS COLUMN-MAJOR MEMORY ORDERING

20. See the NVIDIA GPUDirect Storage product page at

https://docs.nvidia.com/gpudirect-storage/.

https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/gpudirect-storage/

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 14

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

Another memory-related example would be optimizing the code

to use shared memory (or registers) instead of global memory.

As shown before, the latter is the slowest of the available GPU

memory types, so if different threads of the same thread block

need to use specific data elements multiple times, it is more

efficient to make one thread copy those elements to shared

memory so that the other threads can access them there.

Given the very limited amount of shared memory, this must be

carefully designed to achieve the expected improvements. This

refinement can then be expanded to optimize which threads

access which physical banks of the shared on-chip memory.

Specifically, when multiple threads attempt to access memory

in the same bank, they can block each other, delaying the

execution. Managing access to shared memory so that

simultaneous requests are served by different memory banks

removes this bottleneck. There are many examples of such

low-level technical optimizations available on the Internet. One

of them, which uses an example of a reduction-type problem—

namely, summation—was presented in an Nvidia webinar

some years ago: Optimizing Parallel Reduction in CUDA21. In

this webinar, the author shows how he achieved a total 30x

performance improvement in his final optimized kernel over the

initial naïve one, proving how important this step is if one is

after the lowest runtimes possible.

On the other end of the spectrum, there are things that do not

require deep knowledge of GPU architecture, but more of an

algorithmic view of how massively parallel processing is

different from “typical” sequential computing. That means that

very different algorithms might be significantly more efficient

on GPUs than those taught and used in conventional CPU

programming. The most basic example for this is substituting

a “main” loop of the sequential solution with the distribution to

threads in a GPU context. There are many more possibilities,

and sometimes finding an efficient algorithm to solve a

problem on a GPU requires out-of-the-box thinking. For

example, in some cases it might be more efficient overall to

do things that seem counterintuitive—such as avoiding a

return of control to the CPU to perform calculations more

efficiently executed there and instead embedding those

calculations inside an existing GPU kernel—to avoid memory

transfers. A similar technique is to repeat a calculation that

uses identical data and operations in all threads, which, in a

CPU implementation, might be better to perform once and

cache to realize the requirements of independence, or to

repeat calculations within a single thread that could otherwise

be cached to overcome memory limitations.

21 Harris, M. (n.d.). Optimizing parallel reduction in CUDA [NVIDIA Developer

Technology]. NVIDIA.

https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reducti

on/doc/reduction.pdf.

This section barely touches on the various ways in which GPU

code can be made more efficient. We invite the more curious

readers, not afraid of technicalities, to research these topics

further online (particularly using a rich NVIDIA blog and

webinar library). It cannot be overestimated how important this

is, given examples showing that benefits from optimizing might

even outgrow benefits from the naïve conversion from CPU to

GPU in some cases.

Cost–Performance analysis
Based on the benchmarks presented in this paper, it is clear

that even a single GPU can significantly outperform multi-

core CPUs, with the exact performance improvement factor

heavily dependent on the type of problem, hardware used,

and GPU-specific optimizations applied to the algorithm and

implementation.

The key question remaining is how much does this

performance cost? As we mentioned earlier, due to the AI

hype, GPU prices soared in recent years. But their availability

in different cloud offerings has also considerably increased.

GPU instances are available for ad hoc and long-term

provisioning from all the main cloud providers (such as Azure,

AWS, GCS).

As a first step in evaluating the relative cost-performance ratio,

we consider recent generations of CPU and GPU instances

provisioned in Azure with the Linux operating system and using

the bond valuation benchmark performance ratios as the basis:

 Standard_HB176rs_v4, a high-performance CPU VM with

176 CPU cores priced at $7.20 per hour

 Standard_NC80adis_H100_v5, sporting two H100 GPUs

priced at $13.96 per hour

FIGURE 16: AZURE COST-ADJUSTED PERFORMANCE RATIO GPU (2X)

TO CPU (176X)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

 100k 1 mln 10 mln 100 mln 1 bln 10 bln

Total Time Computation Time

https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/reduction.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/reduction.pdf

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 15

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

At least in Azure, after accounting for cost differences, the

benefit of GPUs over CPUs is more muted, though still

substantial, approximately a single order of magnitude. Thus,

demonstrating that when determining the potential cost savings

of converting a model from a CPU to a GPU, using the

computational improvement alone (potentially two or three

orders of magnitude better than a single CPU) may overestimate

the monetary savings by an order of magnitude or more.

As indicated, there are also companies specialized in

provisioning GPU compute power, which, on one hand, provide

a wider variety of GPU models and full control over which GPU

VM one might want to use, and on the other, offer more

competitive prices for the GPU VMs than generic providers

such as Azure or AWS. An example of such a specialty

provider is the aforementioned RunPod.IO22 used in one of our

benchmarks. Below, we present the cost-adjusted performance

factor for the H100 GPU provisioned from RunPod.IO relative

to the 176-core CPU instance provisioned from Azure. The cost

of the Azure instance with 176 cores (Standard_HB176rs_v4)

at the moment of executing this benchmark was $7.20 per

hour, whereas the cost of using a RunPod.IO single H100 PCIe

GPU instance was $1.99 per hour.

Factoring in the cost ratio into the performance ratio, we can

clearly see in Figure 16 that the GPU is not only faster but also

cheaper to use, resulting in stable and impressive total cost-

adjusted performance improvement factors (note that the pure

performance comparison was done against a 16x core

instance, whereas here it is against a 176x core instance).

As most companies might be bound by their IT policies, long-

term contracts, and infrastructure choices to use a specific

cloud service provider, the cost-adjusted GPU benefits might

be somewhat less prominent (however, still clearly visible and

tangible). If using a dedicated provider specialized in GPU

cloud services is an option, it should definitely be considered,

as their pricing tends to be more competitive.

FIGURE 17: RUNPOD.IO COST-ADJUSTED PERFORMANCE RATIO GPU (1X) TO CPU (176X)

22. Accessed 12 December 2025: https://www.runpod.io.

0

20

40

60

80

100

120

140

160

180

200

100 k 1 mln 10 mln 100 mln 1 bln 10 bln

1x H100 Total time

1x H100 Computation time

https://www.runpod.io/

MILLIMAN WHITE PAPER

GPU: Exploring use cases in actuarial modeling 16

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

Conclusions
The inclusion of CUDA in higher-level programming languages

has reduced the expertise needed to migrate a model from a

CPU implementation to a GPU implementation. The ability to

effectively tune a GPU may still necessitate a higher level of

technical expertise, depending on the problem. Furthermore,

the capacity to exploit GPU hardware is also different between

the languages. Use of CUDA or OpenCL from C/C++, for

example, enables explicit access to GPU hardware, but

requires extensive programming expertise. Conversely,

languages such as Python (with Numba) and Julia or Mojo

require only modest programmer effort to leverage the GPU,

but do not expose the same capacity for fine-tuning. Although

large performance differences are possible depending on the

language used and the GPU-specific optimizations applied,

even in the most naïve approaches enabled by Python, the

model runtime improvements from enabling GPU computations

can be impressive and, at the same time, more cost-efficient

than scaling up cores for the CPU models.

There is also an increasing number of proprietary modeling

software that explores or includes the possibility of leveraging

GPU computational capabilities in one way or another.

Typically, an attempt to generically convert any model code

into GPU code will be less efficient than designing a dedicated

algorithm and implementation for a specific problem. This, in

turn, can typically be significantly further improved by applying

GPU-specific technical optimizations. In any case, for models

that meet the broadly outlined GPU-suitability criteria and are

computationally demanding, a GPU seems to be an excellent

path to one- or two-orders-of-magnitude performance

improvements, with somewhat lower, but still significant, cost

savings versus CPU-based approaches.

Solutions for a world at risk™

Milliman leverages deep expertise, actuarial rigor, and advanced

technology to develop solutions for a world at risk. We help clients in

the public and private sectors navigate urgent, complex challenges—

from extreme weather and market volatility to financial insecurity and

rising health costs—so they can meet their business, financial, and

social objectives. Our solutions encompass insurance, financial

services, healthcare, life sciences, and employee benefits. Founded

in 1947, Milliman is an independent firm with offices in major cities

around the globe.

milliman.com

© 2026 Milliman, Inc. All Rights Reserved. The materials in this document represent the opinion of the authors and are not representative of the views of Milliman, Inc. Milliman does not

certify the information, nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent

review of its accuracy and completeness has been performed. Materials may not be reproduced without the express consent of Milliman.

CONTACT

Karol Maciejewski

karol.maciejewski@milliman.com

Chad Schuster

chad.schuster@milliman.com

Jim Brackett

jim.brackett@milliman.com

Corey Grigg

corey.grigg@milliman.com

http://www.milliman.com/
mailto:karol.maciejewski@milliman.com
mailto:chad.schuster@milliman.com
mailto:jim.brackett@milliman.com
mailto:corey.grigg@milliman.com

