MILLIMAN WHITE PAPER

GPU: Exploring use cases
in actuarial modeling

Introduction, applicability, benchmarks, and cost-performance overview.

Karol Maciejewski
Chad Schuster
Jim Brackett
Corey Grigg

Graphical processing units (GPUs) have
reached new heights of popularity with
the advent of artificial intelligence (Al)
models in recent years, which would not
have been possible without them. They
provide unmatched computational power
for parallelizable calculations, hundreds
of times faster than traditional CPU-
based computing. Can they be
effectively used for actuarial modeling,
and if so, for which use cases and how?

A brief history of a GPU

Modern GPUs appeared at the end of the 1990s, when 3dfx
and NVIDIA released their first graphics cards with a dedicated
processor to perform graphics-related calculations. This was a
revolutionary idea: offloading some of the heavy calculations
from the computer’s central processing unit (CPU) and freeing
it for other tasks, at the same time allowing much faster
graphics calculations due to the new processor’s specialization.
The initial uses of hardware-accelerated graphics cards were
video processing and gaming (particularly 3D games).

During the 2000s, the spectrum of potential applications for
GPUs has dramatically increased with the introduction of
CUDA and OpenCL, two frameworks that allow users to submit
custom calculations to be computed on the GPU, not restricting
users to the predefined graphics routines implemented by the
chip producers. CUDA (originally: Compute Unified Device
Architecture, although nowadays, it is rarely expanded) is a
proprietary standard created by NVIDIA and is supported by all
its devices, providing implementations in several popular
languages, such as C, C++, C#, Fortran, Python, or Julia.
OpenCL is an open standard supported by many companies
(including NVIDIA and AMD). Currently, with NVIDIA achieving

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

L) Milliman

an almost monopolistic position in the GPU market, CUDA has
emerged as a more popular choice for GPU computing
applications. The introduction and evolution of these standards
have paved the way for broadening the popularity of general-
purpose GPU computations (GPGPU). In 2016, AMD released
ROCm, an open-source equivalent of CUDA for AMD GPUs,
and although gaining traction, it is still significantly less popular
than CUDA.

Over the years, as implementations and libraries in more
languages were added, CUDA gained increasing popularity in
computational physics, biology, chemistry, and finance. Its first
significant expansion to a wider audience came in the second
half of the 2010s, together with blockchain and cryptocurrency
hype, in which GPUs were heavily used for cryptographic
calculations. An even greater explosion in GPU use came in
the 2020s with mass adoption of a new wave of GPT Al models
(generative pre-trained transformers), which currently require
GPUs for training and efficient execution of user queries,
exploiting computations orders of magnitude faster than those
achievable on CPUs.

CPU versus GPU

So, what makes a GPU so much faster than a CPU? A key
aspect is a fundamentally different architecture. A typical CPU
consists of a few (up to several dozen, in the case of advanced
server processors) calculation cores, each extremely fast and
able to compute complex tasks sequentially. The GPU, on the
other hand, comprises thousands of cores, each of which can
accommodate a subset of specific “simple” calculations; this
arrangement opens the door to massively parallel execution.

One can think about the following analogy, where the CPU is a
sports car and the GPU is a cruise ship. Obviously, in a typical
situation, getting from point A to B is faster with a sports car.
However, if one needs to transport (tens of) thousands of
people, being able to do so with one trip of the cruise ship
significantly outperforms making thousands of trips with the
sports car (if, of course, we assume that both points A and B
can be reached by the car and the ship).

1
February 2026

MILLIMAN WHITE PAPER

The above thought exercise also highlights another important
characteristic of a GPU—all the passengers are traveling on
the same route. Translating this back to computational terms, a
GPU can execute highly parallel calculations by assigning each
of its many cores to a data element, provided that the same
operation is performed on each of them. This model of
calculations is called SIMD (single instruction, multiple data)."

Historically, PC CPUs have been single-core and focused on
sequential execution. Over the years, they have been extended
to have multiple cores and, in more recent years, even to
include some SIMD-like instructions (for example, several
versions of the AVX instruction set support vectorized
operations). The base architecture, however, is subject to
limitations on how dramatically it can change, as it needs to be
able to handle legacy cases. GPUs, on the other hand, have
been designed from scratch with a different purpose and
execution model in mind, so they are still in a different league
with respect to parallelizing calculations.

Nowadays, there are many manufacturers (even if one is in a
clearly dominant position), models, and generations of GPU
cards available. Are all GPUs equal? Absolutely not. So, what
is the best GPU to run a particular set of computations? The
answer depends on the type of calculations needed and
requires a deeper understanding of the GPU architecture and
the different types of calculations it can handle.

Understanding GPU performance

The first point is the general-purpose calculation units
themselves. There are several types of contemporary GPU
cards. The main ones, and historically the first, are called
CUDA cores in NVIDIA cards and Stream Processors in AMD
cards. Although the naming differs between manufacturers, the
concepts and functionalities are largely the same. In the
remainder of this paper, we will use NVIDIA naming for
conciseness. Typically, the number of CUDA cores constrains
the maximum level of parallelization that can be achieved;
more cores mean higher performance. This is partially true. In
fact, there are several types of CUDA cores in each GPU,
specializing in performing calculations on different types of
numeric data. The number of CUDA cores reported as a single
number in most marketing materials and simple technical
specifications refers to the cores specialized for single-
precision floating-point calculations (denoted FP32, with 32 bits
used to represent the number in computer memory). There are,
however, several other types of numbers, each with a different
type of CUDA core—for example, INT32 for integer numbers,
FP16 for half-precision floating point numbers, or FP64 for
double-precision floating point numbers. In most current

1. In fact, the model utilized by GPUs is its close relative, called single instruction,
multiple threads (SIMT). Explaining the technical differences between these
are outside the scope of this paper.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

consumer- and even workstation-level GPUs, the number of
FP64 cores is lower than the number of FP32 and lower-
precision cores. This disparity was present even in first-
generation GPUs but has been amplified in more recent
generations, as the most common uses of GPGPU were
focused on computations that do not require such high
precision (e.g., most machine learning applications and
generative Al use). Boosting performance in these areas (by
increasing the number of relevant cores) has necessitated a
sacrifice in other areas. Unfortunately, scientific (and actuarial)
calculations typically require higher precision, so FP64
performance is much more important. Although top-of-the-line
server-grade GPUs in each generation have retained this
capability for high-precision numbers, each successive
generation comes with a heftier price tag.

Given this trend, it turns out that a server-grade GPU from
several generations ago might outperform some of the much
more expensive current consumer or professional GPUs in high-
precision calculations. To compare different devices’ compute
capabilities, instead of looking at the number of cores, it can be
more instructive to look at FLOPS (Floating Point Operations Per
Second), which, for GPUs, are typically measured with giga- or
tera- prefixes (10° and 102, respectively).

FIGURE 1: SELECTED GPU COMPUTE CAPABILITIES OVER TIME

F32 F64
GPU YEAR TIER TFLOPS TFLOPS
NVIDIA 8800GS 2008 Consumer 0.26 N/A
ATl Radeon HD 4870 2008 Consumer 1.2 0.24
NVIDIA GTX 980 2014 Consumer 4.98 0.16
AMD Radeon R9 295X2 2014 Consumer 5.73 0.72
NVIDIA Tesla K80 2014 Server 4.1 1.37
AMD FirePro W9100 2014 Server 5.24 2.62
NVIDIA Tesla P100 2016 Server 9.53 4.76
NVIDIA RTX 2080 2018 Consumer 10.07 0.31
NVIDIA Tesla V100 2018 Server 14.13 7.07
NVIDIA A100 2021 Server 19.49 9.75
NVIDIA RTX 4090 2022 Consumer 82.58 1.29
NVIDIA H100 2022 Server 51.22 25.61
AMD Radeon MI300X 2023 Server 81.72 81.72
NVIDIA H200 2024 Server 60.32 30.16
NVIDIA RTX 5090 2025 Consumer 104.8 1.64

Source: Compiled based on TechPowerUp GPU database?

2. TechPowerUp. (n.d.). GPU Specs Database. Retrieved September 24, 2025,
from https://www.techpowerup.com/gpu-specs/.

2
February 2026

https://www.techpowerup.com/gpu-specs/

MILLIMAN WHITE PAPER

In a sample from hundreds of models over the years, it is clear
that contemporary consumer GPUs provide the best value for
F32 calculations, whereas 10-year-old server GPUs still
outperform them for F64 calculations. In the last few
generations, an even stronger emphasis has been placed on
the F16 and on new types of cores, namely tensor cores
(NVIDIA) or matrix cores (AMD); these cores are heavily
utilized in generative Al applications (and for brevity are not
shown in the table above).

Tensor cores perform, in a single processor cycle, a fused
multiply-add (FMA) operation on matrices, bringing
parallelization to another level. Not every computational
problem relies on or can be reformulated to this kind of
operation, but the recent generative Al models depend heavily
on it. As generative Al is responsible for most recent GPU
demand, it is no surprise that manufacturers have been
focusing on this new type of core. However, unless an actuarial
model can be formulated as a series of matrix multiplication
and additions, this feature of the latest GPUs will be of limited
usefulness in the actuarial domain. Even for cases where a
model can leverage FMA operations, tensor cores are
specialized for specific types of numbers, typically
accommodating lower-precision cases suitable for Al.
Accordingly, high-precision FMA operations required for
actuarial modeling will still be significantly less performant.

Another consideration is memory availability in the GPU device
(VRAM, from the original Video RAM). By design, GPUs
require data to be in dedicated device memory and not in the
general system memory (RAM). This means that the more
VRAM the device has, the more data it can store and the more
calculations it can execute in parallel (this is true for data-
intensive problems, which have relatively large data input per
computation unit). There are also differences between GPU
generations and models regarding the type of memory used
and the corresponding data throughput, and server-grade
GPUs tend to have more advanced, faster memory dies. As we
will see later in this paper, this can also make a substantial
difference for some applications.

The computational power of GPUs comes with an increasingly
high price tag. Before the cryptocurrency boom, a top-tier
consumer GPU would cost significantly less than $1,000 (e.g.,
NVIDIA GTX 1080 released in 2016 cost $599 at launch?),
whereas a server-grade GPU would be around $5,000 (e.g.,
NVIDIA Tesla P100 released in 2016 cost $5,699 at launch*).
However, since that time, there have been three notable
events contributing to an extreme rise in price:

= Demand surge due to cryptocurrency boom

= Chip shortage and logistic problems during
COVID pandemic

3. TechPowerUp. (n.d.). NVIDIA GeForce GTX 1080. Retrieved September 24,
2025, from https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

= An even bigger demand increase due to the dawn
of generative Al

As a result, the recent top-tier consumer card, such as the
NVIDIA RTX 5090, launched at $1,999, and a server-grade
GPU, such as the NVIDIA H200 or AMD MI300X, will cost over
$30,000. New GPU cards also have higher power consumption
requirements, which additionally makes them more expensive to
run and cool. For a company that utilizes cloud resources, it is
certainly the case that the hourly cost of a GPU-equipped
resource will be higher than that of a CPU-only calculation
resource. The ratio of GPU-to-CPU hourly cost will vary based
on the resources that one is utilizing, but whatever the selection,
a comparison of total cost is clearly an important consideration.

So, is it still worthwhile to go down the GPU path? What kind of
real-world performance improvements are possible? There are
many factors influencing this, and there are several things to
keep in mind when faced with claims of “N times performance
gains.” In the table below, we highlight a few key aspects:

FIGURE 2: GPU-CPU PERFORMANCE GAIN FACTORS

1. Computational problem
The type of computational problem at hand will determine
the possible performance gains. Some problems are
much more suitable for GPU computing than others, as
we will discuss in the next section of the paper.

2. Reference CPU count
What is the base CPU core count for the benchmark?
The same use case might show a different gain factor if
compared to a single CPU core or multicore run (typical
for compute-heavy problems).

3. Quality of the reference CPU code
Level of optimization of the original CPU code. Often, the
GPU code is written by more performance-aware
developers and is simply better than legacy CPU code. In
some cases, significant performance gains could be
achieved just by refactoring the original CPU code.

4. GPU used
What generation and type of GPU is used in the
benchmark? As shown in Figure 1, there are significant
performance differences between GPU devices, so a
benchmark from 2012 would likely underestimate today’s
potential gains.

5. Sample bias
Use cases with higher performance gains are more likely
to be published or publicized.

4. TechPowerUp. (n.d.). NVIDIA Tesla P100 PCle 16 GB. Retrieved September
24, 2025, from https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-
gb.c2888.

3
February 2026

https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888

MILLIMAN WHITE PAPER

Bearing in mind the above, it is true that GPUs can provide a
hundredfold increase in performance. In many cases, the gain
factors will be lower, however, either because of the nature of
the problem itself or because of the implementation on the
GPU. As with CPUs, there can be a substantial difference
between “GPU code” and “efficient GPU code,” and the latter
requires a deep understanding of the GPU architecture. We will
touch upon this topic in the last section of this paper.

In Figure 3, we present selected examples of speed-ups across
different application areas that have been described online.

FIGURE 3: EXAMPLE SPEED-UPS IN REAL-WORLD APPLICATIONS

CPU GPU SPEED-
USE CASE CORES USED upP
Protein structure 128 NVIDIA L40S 177x
inference®
Graph community 112 NVIDIA H100 47x
detection®
Simulating stock
market mid-price for N/A NVIDIA H200 114x
HFT?
Weather forecasting 1 NVIDIA C2050 403x

(WRF-WSMS5)3

Data sources: See footnotes.

There is also an interesting presentation available on the
NVIDIA website® highlighting performance gains across many
use cases in various domains (biology, chemistry, physics)
from using GPUs. However, as it was last updated at the end
of 2012, the numbers would likely be very different when
reevaluated on today’s GPUs.

Suitability for GPU processing

We have already indicated in the earlier sections of this paper
that some computational problems are more suitable for GPU
processing than others. Although the “best” group might exhibit
performance improvements of hundreds of times, the “worst”
will very likely show performance deterioration.

5. Technical Blog. (2025, September 10). Accelerate protein structure inference
over 100x with NVIDIA RTX PRO 6000 Blackwell server edition. NVIDIA
Developer. https://developer.nvidia.com/blog/accelerate-protein-structure-
inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/.

6. Technical Blog. (2025, September 23). How to accelerate community detection
in Python using GPU-powered Leiden. NVIDIA Developer.
https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-
python-using-gpu-powered-leiden/.

7. Technical Blog. (2025, March 4). GPU-accelerate algorithmic trading
simulations by over 100x with Numba. NVIDIA Developer.
https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-
industry/gpu-accelerate-algorithmic.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

Three main elements are key in determining if a given problem
is worth the while implementing on a GPU:

FIGURE 4: KEY ASPECTS OF GPU SUITABILITY

1. Data size
There needs to be sufficient data to saturate thousands of
GPU cores and offset the cost of transferring it to the
device VRAM. At the same time, the problem ideally
should be more compute-intensive than data-intensive.

2. Independence of calculations
Ideally, the calculation for each data element should be
independent of the other elements.

3. Degree of code branching
The code executed in parallel should be as uniform across
GPU cores as possible. Many conditional paths that
depend on data might decrease performance.

The first aspect relates to the fact that there is a (quasi-)fixed
cost of initializing calculations on the GPU. If the problem is too
small, the initialization itself will take longer than solving it on a
CPU, so the performance will be, in fact, worse. A dominant
component of that initial cost can be the transfer of data to the
dedicated memory of the GPU. Even though RAM is
considered to be the fastest possible data storage option,
transferring data between the host (general computer RAM)
and the device (GPU RAM) introduces latency that becomes
significant if subsequent compute times are too short.

The second aspect is directly related to the GPU architecture.
As mentioned, the GPU consists of thousands of computational
cores, and its power therefore lies in its being able to process
calculations in a massively parallel way. If calculations on
different cores must stop and wait for other cores to exchange
information, or if not enough cores are able to process the
calculations simultaneously, this will leave the GPU
underutilized and therefore not efficiently used. The best
problems for the GPU will consist of many independent atomic
calculations, each of which can be completed by a single GPU
core—such as independent Monte-Carlo simulations, modeling
individual policies, or performing the same element-wise
calculation on large arrays of data.

8. Ridwan, R, Kistijantoro, A. |., Kudsy, M., & Gunawan, D. (2015). Performance
evaluation of hybrid parallel computing for WRF model with CUDA and
OpenMP. IEEE Xplore. https://ieeexplore.ieee.org/document/7231463.

9. Berger, M. (2012, December 21). NVIDIA computational chemistry & biology.
NVIDIA. https://www.nvidia.com/docs/IO/122634/computational-chemistry-
biology-benchmarks.pdf.

4
February 2026

https://developer.nvidia.com/blog/accelerate-protein-structure-inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/
https://developer.nvidia.com/blog/accelerate-protein-structure-inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/
https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-python-using-gpu-powered-leiden/
https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-python-using-gpu-powered-leiden/
https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-industry/gpu-accelerate-algorithmic
https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-industry/gpu-accelerate-algorithmic
https://ieeexplore.ieee.org/document/7231463
https://www.nvidia.com/docs/IO/122634/computational-chemistry-biology-benchmarks.pdf
https://www.nvidia.com/docs/IO/122634/computational-chemistry-biology-benchmarks.pdf

MILLIMAN WHITE PAPER

When some inter-dependency exists between data cells, it is
still possible to utilize the GPU and achieve significant
improvements in performance, but typically the benefits will be
less prominent than in completely independent cases. In
programming terms, map () operations (such as multiplying
each element by a factor, where the dimensions of the input
and output are the same) tend to be more efficient on GPUs
than reduce () operations (such as performing a group-by
aggregation of the elements, where the dimension of the input
exceeds the dimension of the output). Reduce-type operations
might have to be reformulated to take maximum advantage of
the parallelization to become truly efficient on GPUs.

Finally, the third aspect refers to a more technically detailed
feature of GPU—the way calculation execution is organized.
Without getting into too much technical detail, the performance
of a GPU will be best if individual calculation cells follow the
same (or very similar) linear path of execution. If the calculation
contains many “if-elseif-else” statements, creating a lot
of possible branches, execution performance will deteriorate.
This is because certain groups of GPU cores must start and
end their computations at the same time, and moreover,
synchronization points for those cores must occur at the same
point in the code. In the best case, this might result in some
cores waiting for the ones with longer execution branches; in
the worst case, the wait might be indefinite if some branches
do not converge to the synchronization point. We take a look at
the tip of the iceberg related to these more technical topics in
the next section.

GPU architecture fundamentals

Until now, we have only scratched the surface of the GPU
architecture. In this section, we will take a slightly deeper look
at this, as efficient use of GPUs for modeling requires an
understanding of their architecture. This is by no means an in-
depth or complete explanation, but it presents a few selected
key concepts in a simplified way.'°

As mentioned earlier, a single GPU consists of thousands of
cores (in NVIDIA GPUs, also called ‘CUDA cores’). These are
physically organized on the GPU into streaming
multiprocessors (SMs), subdivided into streaming processors
(SPs). Cores in a single SP share control logic and in a single
SM share a dedicated on-chip memory (called shared
memory), significantly faster than the global off-chip VRAM.
The number of SMs and cores per SM, as well as the amount
of shared memory available in each SM, varies between
different models and generations of GPUs.

10. For a comprehensive overview, see Nvidia CUDA toolkit documentation.
Retrieved December 3, 2025, from https://docs.nvidia.com/cudal.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

As indicated previously, modern GPUs have even more types of
cores present, specializing in different types of calculations. The
exact types and numbers vary by GPU architecture and model.
Figure 6 shows a simplified architecture of a single processor of
an NVIDIA Ampere GPU (A100) streaming multiprocessor with
(among others) 16 INT32, 16 FP32, 8 F64, and a tensor core for
the aforementioned FMA matrix operations. A single SM in this
architecture has 4 processors like the one depicted and includes
some additional special functions units (SFU, e.g. for
trigonometric function calculation) in each.

FIGURE 6: NVIDIA A100 STREAMING PROCESSOR ARCHITECTURE
(SIMPLIFIED)

Streaming Processor

INT32 INT32
INT32
INT32 INT32

INT32

TensorCore

INT32
INT32 INT32

INT32 INT32

INT32 INT32

FP32

Register file (16384 x 32bit) |

Warp Scheduler/Dispatch Unit (32threads/cl) |

LO Instruction Cache |

When a computation unit (also referred to as a CUDA kernel) is
executed on a GPU, it is mapped to a set of fundamental GPU
execution units—threads. Disregarding, for the sake of this
explanation, more complex cases, we can assume that a single
thread corresponds to a single CUDA core on a single data
element on which computations are to be performed. These
threads are organized into a thread grid and subdivided into
thread blocks. The number of threads in a block and the
number of blocks in a grid are parameters determined by the
program invoking GPU computations. Based on these
parameters and the hardware limitations of the specific GPU
device used, thread blocks are allocated and queued to SMs
for execution.

5
February 2026

https://docs.nvidia.com/cuda/

MILLIMAN WHITE PAPER

FIGURE 7: ORGANIZATION OF THREADS INTO BLOCKS AND GRID

Grid

Block

Block

Block

Block

Block

Block

Subdivision into blocks is important because threads in the
same block enjoy several privileges that threads from separate
blocks do not, as they are executed on a single SM. First,
threads within one block all have access to the same shared
memory of the SM and can exchange information this way.
Second, they can introduce a certain level of dependency
between otherwise independent threads by being able to wait
at a specific point in the code that calls for synchronization and
to continue only after all of them have reached that point, a
technique known as barrier synchronization. This allows all
threads in the block to occasionally update shared information

FIGURE 8: MEMORY THROUGHPUT COMPARISON (GB/S)

900

that could be used as input to the next stage of parallel
calculations. Another element shared by the threads in one
block is a register file, which is a dedicated, fast on-chip block
of memory to store local variables for each thread.

An important concept in understanding parallelism on the GPU
is a thread warp. This is the smallest group of threads that is
executed simultaneously in an SM. For all NVIDIA GPUs to
date, the size of this group has been set to 32 threads, but
based on the documentation, it can be changed in the future.
To achieve maximum performance, all threads in a warp can
only execute the same instruction at any given time (although
on different data elements). However, this becomes a
constraint if the code execution in different threads diverges.
Divergent threads in a single warp decrease efficiency, as
those threads must wait for each other as different code
branches are executed. This is the reason GPU code should
be as uniform as possible across threads, and at the very least
ensure that data elements with different operations (e.g., if-else
branches) are not executed in the same warp.

Last, but not least, is the matter of memory use. Many types of
memory must be considered when dealing with a GPU; not
understanding the differences has the potential to significantly
degrade performance of the code. The first major difference is
the speed of the general-purpose computer RAM and the GPU
VRAM. Nowadays, the former is typically a DDRS5 type of
memory, whereas in GPUs, this differs between GDDR® (in
consumer GPUs) and HBM2/HBM2e (in server GPUs). Even
though RAM is customarily considered the fastest data source
in a computer, as shown in Figure 8, GPU memory is roughly
10x—20x faster. This should clarify why managing the transfers
between RAM and VRAM is such a critical area to optimize
when aiming for high performance.

820
18x
600
448 460
10x
300
192 38.4 51.2 44.8
0 — — [[el Sl Bahbbhis bl
DDRA4-2400 DDR4-2400 DDRA4-3200 DDR5-5600 GDDR6 HBM2 HBM2e

Data source: BittWare Article, Comparing DDR4 and DDR5 Memory. Bandwidth for FPGA Accelerator Cards''"?

11. BittWare. (n.d.). Comparing DDR4 and DDR5 memory bandwidth for FPGA
accelerator cards. https://www.bittware.com/resources/ddr4-and-ddr5-
performance-comparison/.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

12 Double appearance of DDR4-2400 with different results is due to single-
channel (lower result) and dual-channel (higher result) configuration.

6
February 2026

https://www.bittware.com/resources/ddr4-and-ddr5-performance-comparison/
https://www.bittware.com/resources/ddr4-and-ddr5-performance-comparison/

MILLIMAN WHITE PAPER

However, the VRAM throughput of the global GPU memory is
still considered very slow in GPU computation. Depending on
the specific GPU considered, shared (and register) memory
bandwidth can reach more than 12,000 Gb/s'? (for Nvidia V100
GPU, newer GPUs have an even better performance), which is
another 15x faster than VRAM. It is worth noting that the
capacity of global memory in a GPU is usually measured in
gigabytes, whereas each SM’s shared (and register) memory is
only several hundred kilobytes, so their memory usage models
are very different.

As mentioned at the start of this section, this overview barely
touches the tip of the iceberg representing GPU architecture,
its constraints, and dependencies. For readers interested in a
more extensive and technical description, we recommend
more detailed material available, for example, in NVIDIA’s
CUDA Programming Guide. A thorough understanding of
these concepts is a prerequisite for writing a truly performant
GPU code.

Actuarial problems and GPUs

There are a variety of computationally intensive problems
actuaries encounter for which a GPU may offer performance
improvements. The primary factors that determine the
suitability of a problem for a GPU have been discussed. In this
section, we will describe general types of problems in actuarial
science and a variety of problems that we have implemented
on a GPU.

ASSET-LIABILITY MANAGEMENT

A broad category of modeling in the insurance industry is asset-
liability management (ALM). The examples that follow illustrate
the usage of a GPU to model assets, liabilities, or both. A more
complicated aspect of ALM modeling is when there is an
interdependence between assets and liabilities. There are
several approaches to designing such a model. The two most
common in Europe are full ALM (also called dynamic) and
flexing-based ALM. The former relies on modelling liabilities and
assets period by period and directly including the effects of one
side on the other. That requires aggregation and allocation
calculations in each period. As mentioned in an earlier section,
this kind of reduce operation scales less efficiently for
parallelization than simple map operations. This compounds the
time-dimension interdependency already present in the liability
cash flow projection modeling. This kind of model is also typically
very memory-intensive, as it requires all liability and asset
information to be kept in memory during all calculations.

13. Jia, Z., Maggioni, M., Smith, J., & Scarpazza, D. P. (2019, March 18).
Dissecting the NVidia Turing T4 GPU via microbenchmarking. Citadel, 34.
https://arxiv.org/pdf/1903.07486.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

Flexing approach, on the other hand, allows first projecting the
deterministic base liability cashflows (e.g., before any impact
from market-related factors, such as profit-sharing) for the
whole projection period and then applying factor-based scaling
(flexing) to these cashflows based on specific investment
results from each stochastic economic scenario, period by
period. This approach requires a sacrifice of some precision, as
it is typically done at an aggregate level of liability cash flows
(e.g., product/technical guarantee rate level), but is less
memory- and computation-intensive. It also removes one of the
dependencies and the need to aggregate—allocate at each step
of the calculations, which makes it notably more suitable for
GPU computations. A similar approach for assets could be
considered, in which gross asset cash flows are pre-projected
independently, aggregated to the granularity of an
investment/disinvestment algorithm, and potentially scalar
overlays such as defaults. Then, factor-based scaling is applied
based on projected purchases, sales, and defaults.

The general problem with a complete ALM calculation chain for
GPU computations is that, even with the flexing approach,
there are still many very diverse calculations. This departure
from uniform and linear flow across threads (in the same warp)
is far from ideal and poses significant challenges to an efficient
GPU implementation. It is, of course, possible to implement the
complete flow on a GPU, or to select the most computationally
intensive parts for GPU execution while keeping the higher-
level flow on CPU. One could also try to reformulate the typical
ALM approach to better fit the GPU paradigms.

For one of its clients in France, Milliman has built a simplified
prototype ALM model supporting both flexing and full dynamic
approaches and running both on CPU and GPU. In our
benchmark results for the client, we saw around 10x
performance increase over a comparable multi-CPU run
(based on eight cores, 2,000 stochastic simulations, 100k
policy portfolio, and 5,000 asset portfolio and flexing model).
This was based on a very naive CPU-to-GPU code
conversion without any specific optimization around, for
example, memory transfers or GPU architecture, as this time-
boxed experiment was ancillary to primary project objectives.
We also observed that for some parts of the calculations,
performance improvements were significantly higher
(reducing runtime by up to 95%, e.g., economic scenario data
transformations or generating outputs), whereas for others,
those improvements were much smaller (reducing runtime by
only around 50%, e.g., aggregations of liability cashflows or
setting up model structure).

7
February 2026

https://arxiv.org/pdf/1903.07486

MILLIMAN WHITE PAPER

Life liability products

A broad class of problems that fit the GPU model well is
creating cash-flow projections of life insurance liabilities. If a
company wants to do it at the most detailed level—policy or
coverage—this will mean millions of policies projected over
several decades. Such models can be quite heavy to run, even
without involving stochastic scenarios (which could be applied,
for example, to mortality or market data, and therefore increase
both complexity and computational requirements). Even a
simple liability cashflow projection model has one potential
drawback for GPU conversion, as there is an interdependency
within the projection along the time dimension (i.e., values at t
are based on values at t-1), which, to some extent, limits the
principle of independence of atomic calculations submitted to
GPU threads.

We have a few examples of this type of modeling in subsequent
sections of this paper. One can also explore a simplified case,
such as this 2023 Milliman White Paper, “Building a high-
performance in-house life projection and ALM model:
Architecture and implementation considerations in Python.”'*
The focus of that paper was different, but it also shows a 20-fold
increase in performance after translating the model into GPU-
enabled code (for a sample size of 0.5 million policies).

VARIABLE ANNUITIES

A Variable Annuity (VA) is a life insurance product, often with
embedded options, that has exposure to the capital markets.
Essentially, a VA is a tax-advantaged way to invest in the
market, often with guarantees to protect the policyholder from
downside risk.

Management of a block of VAs has high computational
demands due to risk management and financial reporting
requirements that require projecting cash flows for both risk-
neutral and real-world simulations over many economic
scenarios. The payoff profile of a VA is path-dependent, which
creates interdependence in the time dimension, limiting that
aspect of parallelism.

Here are some examples of the types of metrics companies
may need to run:

= Risk-neutral valuations for market sensitivities for
hedging, pricing, and/or reserving

= Real-world simulations for statutory reporting and
capital calculations

= Stochastic-on-stochastic simulations to test hedging
strategies, run plan scenarios, and/or generate results
of a clearly-defined hedge strategy (CDHS) for
financial reporting

14. Maciejewski, K., Echchelh, M., & Sznajder, D. (2023, March 13). Building a
high-performance in-house life projection and ALM model: Architecture and
implementation considerations in Python. Milliman.
https://www.milliman.com/en/insight/building-in-house-projection-alm-model-
python.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

VA is a separate account product that typically has little general
account exposure at the contract level, resulting in minimal
interdependence between contracts for most types of runs. As
such, the data set is highly parallelizable for many of the
intense computational workloads that insurers need to
generate. We have built GPU models for stochastic-on-
stochastic, risk management, hedge simulation, and financial
reporting in both C++ and Python with Numba.

FIXED INDEX ANNUITIES

The Fixed Index Annuity (FIA) is another type of annuity in the
life insurance space that has capital markets exposure. As with
the VA, the FIA has path dependence and metrics that require
projection of liability cash flows. Historically, risk management
of these products was the primary computationally intensive
metric, but the advent of VM-22, a U.S. principles-based
reserving framework requiring valuation under stochastic real-
world scenarios, has added additional areas of heavy
computational demand.

Unlike VA, FIA is a general account product that may add an
additional layer of complexity from a modeling perspective,
discussed in the ALM section above. For some types of runs,
the evolution of the general account in aggregate is necessary
to capture at a policy level. This additional layer of dependence
between the contracts reduces parallelism. The degree to
which this may impact GPU throughput will be dependent on
the number of contracts and/or scenarios being run and the
number of times the calculation requires synchronization
across contracts.

Our experience modeling FIA on GPUs has been focused on
risk management and hedging using models built in C++. For
this paper, we built a toy model in Python/Numba to simulate
pricing an FIA with a Guaranteed Lifetime Withdrawal Benefit
(GLWB) in the VM-22 framework.

The model is not fully developed from an assumptions and
product feature perspective, but is a means of looking at
relative impacts of modeling decisions and constraints. All FIA
simulations are for 50 years at a monthly frequency over 1,000
real-world scenarios. The model was run on a CPU and GPU
using Python with Numba.

Several observations from this exercise illustrate points
highlighted elsewhere in this paper. In particular, this exercise
gives a sense of how the design of the implementation may
change as the problem evolves, the impact of memory layout,
and how reducing parallelism can impact performance.

8
February 2026

https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python
https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python

MILLIMAN WHITE PAPER

The runtime comparisons that follow are based on this model
and are on machines from Azure that are running the Linux
operating system:

= Standard_HB176rs_v4, a high-performance CPU VM with
176 CPU cores priced at $7.20 per hour

= Standard_NC80adis_H100_v5, sporting two H100 GPUs
priced at $13.96 per hour

All runs are double precision (float64) and do not include
input/output or compile time in the runtime. The GPU execution
time includes memory transfer to and from the GPU. It should
be noted that this model is only utilizing only one GPU since it
is not equipped to utilize multiple GPUs.

Figure 9 shows results under the assumption that the contracts
have no interdependence. In other words, each policy is
completely independent of any other policy. With that in mind,
this run is a single kernel call to the GPU to calculate all
policies, scenarios, and timesteps.

FIGURE 9: FIA PRICING BENCHMARK CPU TO GPU COMPARISON
(EXECUTION TIME)

CPU GPU
POLICIES (172 CORES) (1 GPU) RATIO
32 0.05 0.01 3.98
128 0.14 0.02 6.47
1280 1.03 0.12 8.52
20480 15.91 2.67 5.95
81920 63.82 10.24 6

The results demonstrate that even for a small number of
policies, the GPU shows a runtime improvement over the CPU.
Although the number of policies is small, each policy accounts

for 600,000 iterations through the logic (scenarios x timesteps).

The CPU and GPU both exhibit a nonlinear response to the
increase in policies initially since neither is saturated with a
small number of policies. As the number of policies increases,
both the CPU and GPU timings scale approximately linearly
and approach a sixfold relative performance improvement of
the GPU relative to the CPU.

The next part of the exercise is to consider what happens if
there is dependence between the policies. This is the type of
complication that one would encounter when simulating
dynamic asset modeling, as described in the ALM section. To
accomplish this, we will run the kernel multiple times to move
the policy information along each scenario for a specific
number of timesteps, and then return control to the CPU. We
want to store the state of each policy by scenario on the GPU
to avoid unnecessary data transfers.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

The implementation of the above model loaded a single
representation of the policy data in global memory. For this
exercise, however, we need to store each policy by scenario to
capture the policy state between kernel calls. In the initial
version, the model reads the policy data from global memory
and loads it into local data structures. This design reduces the
number of calls to global memory, but to accommodate this
exercise would necessitate an explicit update of the information
in global memory to capture the state when the kernel cedes
control back to the CPU. To avoid an explicit update and
repeated loading into the local memory structures, the model
was adjusted to operate directly on data from global memory. A
comparison of the original implementation to the new version is
shown in Figure 10.

FIGURE 10: FIA PRICING BENCHMARK IMPLEMENTATION COMPARISON
(EXECUTION TIME)

PERCENT
POLICIES ORIGINAL ALTERNATIVE INCREASE
32 0.01 0.09 612%
128 0.02 0.20 848%
1280 0.12 1.82 1405%
20480 2.67 28.74 975%
81920 10.24 114.79 1021%

The impact of the implementation change was an increase in
runtime by almost 11 times. This reduction in performance is
likely tied to two related things. The new model has many
more calls to global memory than the previous version, and
the memory layout in global memory for the policy data
structure is not implemented in a way to facilitate coalescing
of memory. It is possible to alter the way the policy data is
stored and used, but the resulting implementation would be
tedious and less maintainable.

The final version of the model for this exercise was a hybrid of
the original and proposed models. We reverted to utilizing local
storage to minimize calls to global memory and added logic to
update an expanded representation of the policy data in global
memory. The result was performance in line with the initial
version of the model.

With this new version in place, we returned to the exercise and
ran the model with varying frequencies of checkpoints. The
label “Frequency” in Figure 11 is the frequency at which we
returned control to the CPU. At the end of each call to the
kernel, we copied the entire results data structure back to the
CPU to emulate possible methods for implementing the asset
strategy. We moved the results from the GPU back to the CPU
to account for the possibility that the CPU would run the asset
strategy. If the asset strategy were also run on the GPU, there
would be no need to move the results to the CPU. Figure 11
shows the percentage increase in runtime when simulating the
flow of control at varying frequencies to run an asset strategy.

9
February 2026

MILLIMAN WHITE PAPER

FIGURE 11: FIA PRICING BENCHMARK CPU CHECKPOINT FREQUENCY
(EXECUTION TIME)

FREQUENCY TIME (S) PERCENT INCREASE
None 14.59 0%

Annual 58.18 299%

Quarterly 85.53 486%

Monthly 123.47 746%

The reduction in performance is from the transfer of data back to
the CPU and the reloading of data from global memory to the
local data structures. The impact of the latter would be reduced
by the restructure of the policy data contemplated above.

ASSET VALUATIONS AND HEDGING

Another example from the area of asset—liability and risk
management is the valuation of assets in an insurance
company'’s portfolio. Nowadays, companies perform a quickly
increasing number of projections for various purposes:

= Best-estimate calculations for products with financial
profit-sharing

= Risk-based capital calculations

= Sensitivities for hedging and capital optimizations

For this paper, we have developed a simple engine for bond
market valuation using the discounted cash flows approach. It
can be shown that this problem fits the criteria of GPU-
suitability very well.

Typical bond portfolios held by life insurance companies vary
from several hundred to thousands of individual instruments,
with more added in each projected reinvestment cycle to reflect
the simulated purchases. Each bond needs to be valued at
each projection step until its maturity and typically across a
number of stochastic scenarios. Therefore, the dimensionality
of the problem (data size) grows quickly: [bonds x

projection steps x scenarios].

Valuation of each cell of this array can be considered
independent of the others. One might argue (and rightfully so)
that, at least in some cases, fixed-rate bond cash flows from
one projection step to another remain largely unchanged and
can be reused. This can be considered, however, one case for
which the benefit of independence is bigger than the efficiency
of performing each calculation exactly once. The simplicity of
the implementation and performance gain outweigh the need to
repeat the cash flow calculation.

15. See the RunPod homepage page at https://www.runpod.io.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

The third key element—code branching—is also limited. Each
bond has a different maturity term, so although the exact
number of computations in each cell varies, the logic of the
calculation flow remains uniform and linear.

In the valuation engine developed for this paper, we have
made several simplifying assumptions, which facilitated the
development without impacting the observations and
conclusions:

= We used fixed-coupon bonds only
= We generated random discount factors

= We performed valuations annually from start of the
projection until maturity of the last bond in the portfolio

For the benchmark exercise, we used a dummy bond portfolio
with an average term-to-redemption of 20 years (maximum 40
years, minimum 1 year), a fixed coupon payment, and varying
coupon payment frequencies (from monthly to annual). The
sample size mentioned in the following figures refers to the
(rounded) total number of market value calculations (equal to
the product of three dimensions: number of bonds, number of
stochastic simulations, and number of years until maturity for
each bond). As an example, the 10-million sample corresponds
to 550 bonds, 960 simulations, and an average of 19.4 years
until maturity (giving a total of 10,243,200 calculations).

The implementation was done in Python using Numba (for
both CPU and GPU variants), using single precision (float32)
and Fortran-ordering of array elements in memory (which, in
our implementation, facilitated splitting arrays in the multi-
GPU context).

For the main part of benchmarking this use case, we used a
machine with an EPYC 7402P CPU, 256GB RAM, and 4x
NVIDIA Tesla P100s with 16GB VRAM each. For the test runs,
we used different combinations of CPU cores and GPUs, as
well as various sample sizes. The P100 is a relatively old
generation of GPU (based on the Tesla Pascal architecture,
introduced in 2016), so we also include the computation time
for a modern H100 GPU with 80GB VRAM, provisioned from a
specialized GPU-cloud instance provider.'®

We timed the execution on the host side using the standard
Python time library, where relevant, and, where possible, split
the total execution into loading data into VRAM, pure
computations, and retrieving results from VRAM. Loading data
from disk and generating discount factors are not included in
the results.

10
February 2026

https://www.runpod.io/

MILLIMAN WHITE PAPER

FIGURE 12: BOND VALUATION BENCHMARK (TOTAL EXECUTION TIME IN SECONDS)

SAMPLE SIZE 1K 10K 100 K 1 MLN 10 MLN 100 MLN 1BLN 10 BLN'®
CPU: 1 core 0.0012 0.0097 0.0862 0.8518 8.5158 85.0788 849.2658 8562.08
CPU: 16 cores 0.0028 0.0030 0.0226 0.1891 1.56362 15.0580 147.3351 1462.8326
GPU: 1x P100 0.0048 0.0069 0.0094 0.0429 0.0753 0.4087 3.8794 N/AT?
GPU: 4x P100 0.0098 0.0090 0.0082 0.0151 0.0439 0.2114 1.6167 16.1857
GPU: 1x H100 0.0019 0.0028 0.0039 0.0171 0.0355 0.2899 2.8836 27.2149

FIGURE 13: BOND VALUATION BENCHMARK (COMPUTATION ONLY, TIME IN SECONDS)

SAMPLE SIZE 1K 10 K 100 K 1 MLN 10 MLN 100 MLN 1BLN 10 BLN
CPU: 1 core 0.0012 0.0097 0.0862 0.8518 8.5158 85.0788 849.2658 8562.08
CPU: 16 cores 0.0028 0.0030 0.0226 0.1891 1.5362 15.0580 147.3351 1462.8326
GPU: 1x P100 0.0007 0.0002 0.0005 0.0029 0.0245 0.2285 2.2136 N/A
GPU: 4x P100 0.0044 0.0015 0.0029 0.0025 0.0236 0.1213 0.8373 9.7637
GPU: 1x H100 0.0003 0.0003 0.0003 0.0008 0.0064 0.0621 0.6181 6.1683

FIGURE 14: PERFORMANCE IMPROVEMENT GPU TO CPU X16

GPU to CPU x16 (total execution)

ps 3
100 3 3 0
p- © @© = 1x P100
N
©
75 Q S m4x P100
© «)
RN ™ 5
[32) © = 1x H100
50 < S
<t @ 8
» 8 g 3 B - T
100 k 1 min 10 min 100 min 1 bin 10 bin
GPU to CPU x16 (computation only)
© =3 ~ [te)
300 0 S N ® N
y © ~
]) 3 Q Q m1x P100
250 B
m4x P100
200
= 1x H100
150 5
) 3]
100 & B 3! 2 d %
™
© 3 © & ™~ ©
< ©
50 K) =
m- : :
0 S ||
100 k 1 min 10 min 100 min 1 bin 10 bin
16. Due to very high volatility of the time required to initialize the GPU and return control to the CPU, the number in the last row of this column has
been calculated as a proxy using actual memory transfer times and calculation time, and an average overhead from 1 billion sample runs.
17. A single P100 GPU with 16 GB VRAM is not able to handle that much data.
GPU: Exploring use cases in actuarial modeling 11

Introduction, applicability, benchmarks, and cost-performance overview. February 2026

MILLIMAN WHITE PAPER

Figure 12 presents an overview of the results in terms of total
execution time, and Figure 13 presents the results in terms of
pure computation time (which is the same in the case of CPU-
based benchmark; we excluded the disk to general memory
loading time, as it is the same regardless of CPU or GPU being
used. It is worth noting that in the case of computing resources
provisioned in the cloud, these fixed overhead times, including
the time it takes to boot up and prepare a virtual machine for
calculation, will be more expensive for the GPU machine, given
that it would typically have a higher cost per unit of VM uptime.

Figure 14 shows comparative graphs of performance
improvement factor between various GPU runs and the
corresponding 16-core CPU run, which we believe is more
representative and realistic than running on a single core. From
this overview, we can clearly see that for small samples, the
benefits of using a GPU are small, as the overhead related to
the GPU initialization and use overshadows the pure
computational benefit. For this model, it seems a sample size
between 10 and 100 million bond valuations is required to
realize stable execution times, reflecting a performance
improvement of approximately 40x for the older P100 GPU and
50x for the newer H100. However, when looking at pure
computational time, excluding data transfer times, we see that
at only approximately 1 million calculation cells, a stable level
of around 65x improvement is reached on the P100 GPU and
an impressive factor of 240x on the H100 GPU.

In a multi-GPU context, it is important to mention that there are
different ways multiple devices can be utilized to distribute
calculations. The approach used in this benchmark was to
create separate CPU threads (using the standard Python
threads library), one for each GPU device, and let each thread
manage the transfer of its relevant chunk of data, the CUDA
kernel invocation, and the transfer of the results back to
general RAM. The final step was to put the partial results
together into a single array to align the final output with the
single-GPU and -CPU cases.

The benefits observed when using multiple GPUs were
higher, as expected, but did not demonstrate perfectly-linear
scaling with the number of GPUs'8, suggesting an increase in
the overhead when working with several devices. In terms of
total execution, a stable point seems to be achieved between
100 million and 1 billion cells (25 million and 250 million per
GPU) at an improvement factor of around 80x. In terms of
pure computation, there is apparently a bit more stability, with
the improvement factor increasing to reach 120x for 100
million samples.

18. A point worth noting—this is also in line with what has been observed when
increasing the CPU core count.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

Keeping in mind that these are factors of improvement over a
16 core CPU run, and even taking into account the time spent
on data transfers between memory types, these results still
show an very impressive performance gain that would bring a
model runtime of 1 hour to just over 1.2 minutes given a single
modern GPU (and 1.5 minute given a cheaper, older GPU).
Achieving the same result using a CPU grid would require
utilizing almost 600 cores!

Using multiple GPUs in parallel will likely be overkill for most
actuarial workloads, but it can help when the data size exceeds
the capability of a single GPU (as was the case with the 10-
billion-sample dataset in this benchmark). Even then, an
alternative is to split the data into chunks and submit the
calculations to the same GPU in a sequence. Moreover, with
modern server-grade GPUs having memory of 100+ GB,
memory exhaustion on a single device by actuarial model data
is unlikely.

The implementation of this benchmark case was done in a
relatively “naive” way, as far as GPU optimizations are
concerned. As we will discuss in the next section, there is
potential for significant improvement if GPU architecture-
specific details are taken into account while fine-tuning the
code. Similarly, CPU performance could be enhanced using
optimizations targeted at specific hardware topology and
microarchitectural elements of high-performance machines.
Each requires a substantial amount of highly technical
knowledge, which is likely unknown to even the most tech-
savvy actuaries. Therefore, we see this simple approach as
more realistic for an actuarial modelling use case.

Efficient GPU modeling

The technical expertise required to utilize GPUs has diminished
over time with advances in CUDA and with the accessibility of
CUDA through high-level languages. The need for advanced
technical expertise to efficiently utilize a GPU persists for many
actuarial applications. The value added from tuning a GPU falls
on a spectrum that is dependent on the problem. There are
instances where converting a CPU implementation of a model
to a GPU implementation is straightforward, and tuning may
only result in modest performance gains. On the other end of
the spectrum, tuning may deliver substantial gains in
performance and cost reductions. Some aspects of utilizing a
GPU efficiently are related to understanding the structure and
mechanics of a GPU processor. There are other aspects of
tuning that center around how to best implement a calculation
to optimize parallelism for a specific use case. There are
instances where the optimal way to use a GPU is not optimal
for a CPU.

12
February 2026

MILLIMAN WHITE PAPER

Different levels of understanding the technical aspects of a
GPU architecture enable several relatively “standard”
optimizations that are widespread in more sophisticated GPU
use cases. The simplest example is choosing the right shape of
the thread grid—in particular, the number of threads per block.
Recall from our earlier discussion on thread warps that 32 is
the minimum number of threads that can be executed
simultaneously in a block. Therefore, best practice is to use a
multiple of 32 as the number of threads in a block, thereby
eliminating “empty” threads. Additionally, each GPU imposes a
maximum on the number of threads per block (typically 1,024
or 2,048). Clearly, these two constraints still leave a wide range
of possible warp sizes.

There is no single recipe for an optimal number; depending on
the computational problem at hand and the specifications of
the GPU used, different values might be the best in different
cases. The relevant individual GPU specifications include,
among others, the maximum number of blocks per SM, the
maximum number of threads per SM, and the amounts of
shared and register memory per SM. Finding the optimal
choice is to seek a balance between occupancy maximization
and memory bandwidth optimization. Occupancy is a measure
of how many threads (or warps) are active in an SM at any
given time, compared to the theoretical limit. This is important
because it keeps the utilization of the SMs high and allows for
latency hiding, which is a technique that allows the GPUs to
quickly switch from threads that are stalled (waiting, e.g., for
memory operation) to others that can perform their operations
and, in that way, minimize the effect of some bottlenecks. On
the other hand, there are limits on shared and register memory
sizes on each SM. The more threads are executed on an SM,
the less memory is available per thread, which might increase
latency due to additional global memory access required.

Another way to minimize latency and increase performance is
to use streams. They allow for a certain degree of
asynchronous operations on the GPU—simultaneously
executing kernel invocations and memory transfers between
the host and GPU, as well as independent kernel executions to
run in parallel. Minimizing bottlenecks and ensuring maximum
GPU load can ultimately be quite a challenging task.
Fortunately, there are sophisticated tools, such as NVIDIA
Nsight Compute'® for CUDA workflows, that can analyze
workload performance and generate guidance on how to
potentially optimize it.

It is also important to understand the GPU features that are
available on the device one is using and how those features
can be accessed in different programming languages and their
libraries. Some will allow greater control over technical

19. See the NVIDIA Nsight Compute product page at
https://developer.nvidia.com/nsight-compute.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

execution parameters, and some provide additional tools. An
example of this can be GPU Direct Storage (GDS),?° which is a
toolkit that enables direct data transfers between the GPU and
data storage. This allows skipping the CPU and general system
RAM when reading and writing files, significantly speeding up
input-output operations. In the aforementioned example of a
prototype ALM model built for a French Milliman client, we saw
a 12x decrease in the time required to generate result files after
enabling Direct Storage for this step.

A prime example of a more complex optimization is memory
coalescing. When different threads of the same warp request
data from the global GPU memory, the time it takes the GPU
to fulfill those requests depends on where the data are
physically located in memory. In the best case, requested
data cells are adjacent to each other, and, as a consequence,
can be provisioned back to threads all at once. However, if
those cells are spread in different parts of memory, it will take
several cycles to collect all of them and ultimately fulfill the
warp request. Memory coalescing ensures threads within the
same warp access data that are adjacent in global memory.
When one is working with multidimensional numerical arrays
(as is typically the case in the GPU context), ensuring the
right alignment between threads and data cells in the array
boils down to understanding the C-style versus Fortran-style
memory order and accessing the arrays accordingly. In C-
style convention, 2D arrays are stored in memory in row-
major order, meaning elements of a single row are next to
each other in memory. In Fortran-style convention, things are
reversed, and column order is used, putting elements of the
same column next to each other in memory. In higher
dimensions, that arrangement corresponds to the innermost
index changing most quickly (row-major memory
representation) and the outermost index changing most
quickly (column-major memory representation).

FIGURE 15: ROW- VERSUS COLUMN-MAJOR MEMORY ORDERING

Row-majororder

2jq—B45—845
4y Ay d3g
| #31 4932433

Column-major order
[aj1 ath a4
821 /922 /923
| 934 932 ‘33

20. See the NVIDIA GPUDirect Storage product page at
https://docs.nvidia.com/gpudirect-storage/.

13
February 2026

https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/gpudirect-storage/

MILLIMAN WHITE PAPER

Another memory-related example would be optimizing the code
to use shared memory (or registers) instead of global memory.
As shown before, the latter is the slowest of the available GPU
memory types, so if different threads of the same thread block
need to use specific data elements multiple times, it is more
efficient to make one thread copy those elements to shared
memory so that the other threads can access them there.
Given the very limited amount of shared memory, this must be
carefully designed to achieve the expected improvements. This
refinement can then be expanded to optimize which threads
access which physical banks of the shared on-chip memory.
Specifically, when multiple threads attempt to access memory
in the same bank, they can block each other, delaying the
execution. Managing access to shared memory so that
simultaneous requests are served by different memory banks
removes this bottleneck. There are many examples of such
low-level technical optimizations available on the Internet. One
of them, which uses an example of a reduction-type problem—
namely, summation—was presented in an Nvidia webinar
some years ago: Optimizing Parallel Reduction in CUDA21. In
this webinar, the author shows how he achieved a total 30x
performance improvement in his final optimized kernel over the
initial naive one, proving how important this step is if one is
after the lowest runtimes possible.

On the other end of the spectrum, there are things that do not
require deep knowledge of GPU architecture, but more of an
algorithmic view of how massively parallel processing is
different from “typical” sequential computing. That means that
very different algorithms might be significantly more efficient
on GPUs than those taught and used in conventional CPU
programming. The most basic example for this is substituting
a “main” loop of the sequential solution with the distribution to
threads in a GPU context. There are many more possibilities,
and sometimes finding an efficient algorithm to solve a
problem on a GPU requires out-of-the-box thinking. For
example, in some cases it might be more efficient overall to
do things that seem counterintuitive—such as avoiding a
return of control to the CPU to perform calculations more
efficiently executed there and instead embedding those
calculations inside an existing GPU kernel—to avoid memory
transfers. A similar technique is to repeat a calculation that
uses identical data and operations in all threads, which, in a
CPU implementation, might be better to perform once and
cache to realize the requirements of independence, or to
repeat calculations within a single thread that could otherwise
be cached to overcome memory limitations.

21 Harris, M. (n.d.). Optimizing parallel reduction in CUDA [NVIDIA Developer
Technology]. NVIDIA.
https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reducti
on/doc/reduction.pdf.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

This section barely touches on the various ways in which GPU
code can be made more efficient. We invite the more curious
readers, not afraid of technicalities, to research these topics
further online (particularly using a rich NVIDIA blog and
webinar library). It cannot be overestimated how important this
is, given examples showing that benefits from optimizing might
even outgrow benefits from the naive conversion from CPU to
GPU in some cases.

Cost—Performance analysis

Based on the benchmarks presented in this paper, it is clear
that even a single GPU can significantly outperform multi-
core CPUs, with the exact performance improvement factor
heavily dependent on the type of problem, hardware used,
and GPU-specific optimizations applied to the algorithm and
implementation.

The key question remaining is how much does this
performance cost? As we mentioned earlier, due to the Al
hype, GPU prices soared in recent years. But their availability
in different cloud offerings has also considerably increased.
GPU instances are available for ad hoc and long-term
provisioning from all the main cloud providers (such as Azure,
AWS, GCS).

As a first step in evaluating the relative cost-performance ratio,
we consider recent generations of CPU and GPU instances

provisioned in Azure with the Linux operating system and using
the bond valuation benchmark performance ratios as the basis:

= Standard_HB176rs_v4, a high-performance CPU VM with
176 CPU cores priced at $7.20 per hour

= Standard_NC80adis_H100_v5, sporting two H100 GPUs
priced at $13.96 per hour

FIGURE 16: AZURE COST-ADJUSTED PERFORMANCE RATIO GPU (2X)
TO CPU (176X)

100k 1 min 100 min 1 bin 10 bin

13
12
11
10

O=-2NWhrOON®O©

10 min

m Total Time Computation Time

14
February 2026

https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/reduction.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/reduction.pdf

MILLIMAN WHITE PAPER

At least in Azure, after accounting for cost differences, the
benefit of GPUs over CPUs is more muted, though still
substantial, approximately a single order of magnitude. Thus,
demonstrating that when determining the potential cost savings
of converting a model from a CPU to a GPU, using the
computational improvement alone (potentially two or three
orders of magnitude better than a single CPU) may overestimate
the monetary savings by an order of magnitude or more.

As indicated, there are also companies specialized in
provisioning GPU compute power, which, on one hand, provide
a wider variety of GPU models and full control over which GPU
VM one might want to use, and on the other, offer more
competitive prices for the GPU VMs than generic providers
such as Azure or AWS. An example of such a specialty
provider is the aforementioned RunPod.l0?%? used in one of our
benchmarks. Below, we present the cost-adjusted performance
factor for the H100 GPU provisioned from RunPod.IO relative
to the 176-core CPU instance provisioned from Azure. The cost

of the Azure instance with 176 cores (Standard_HB176rs_v4)
at the moment of executing this benchmark was $7.20 per
hour, whereas the cost of using a RunPod.lO single H100 PCle
GPU instance was $1.99 per hour.

Factoring in the cost ratio into the performance ratio, we can
clearly see in Figure 16 that the GPU is not only faster but also
cheaper to use, resulting in stable and impressive total cost-
adjusted performance improvement factors (note that the pure
performance comparison was done against a 16x core
instance, whereas here it is against a 176x core instance).

As most companies might be bound by their IT policies, long-
term contracts, and infrastructure choices to use a specific
cloud service provider, the cost-adjusted GPU benefits might
be somewhat less prominent (however, still clearly visible and
tangible). If using a dedicated provider specialized in GPU
cloud services is an option, it should definitely be considered,
as their pricing tends to be more competitive.

FIGURE 17: RUNPOD.IO COST-ADJUSTED PERFORMANCE RATIO GPU (1X) TO CPU (176X)

200
180
160
140
120
100
80
60
40
20

0 — | |

100 k 1 min 10 min

22. Accessed 12 December 2025: https://www.runpod.io.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

100 min

m 1x H100 Total time
1x H100 Computation time

1bin 10 bin

15
February 2026

https://www.runpod.io/

MILLIMAN WHITE PAPER

Conclusions

The inclusion of CUDA in higher-level programming languages
has reduced the expertise needed to migrate a model from a
CPU implementation to a GPU implementation. The ability to
effectively tune a GPU may still necessitate a higher level of
technical expertise, depending on the problem. Furthermore,
the capacity to exploit GPU hardware is also different between
the languages. Use of CUDA or OpenCL from C/C++, for
example, enables explicit access to GPU hardware, but
requires extensive programming expertise. Conversely,
languages such as Python (with Numba) and Julia or Mojo
require only modest programmer effort to leverage the GPU,
but do not expose the same capacity for fine-tuning. Although
large performance differences are possible depending on the
language used and the GPU-specific optimizations applied,
even in the most naive approaches enabled by Python, the

model runtime improvements from enabling GPU computations

can be impressive and, at the same time, more cost-efficient
than scaling up cores for the CPU models.

Solutions for a world at risk™

Milliman leverages deep expertise, actuarial rigor, and advanced
technology to develop solutions for a world at risk. We help clients in
the public and private sectors navigate urgent, complex challenges—
from extreme weather and market volatility to financial insecurity and
rising health costs—so they can meet their business, financial, and
social objectives. Our solutions encompass insurance, financial
services, healthcare, life sciences, and employee benefits. Founded
in 1947, Milliman is an independent firm with offices in major cities
around the globe.

milliman.com

L) Milliman

There is also an increasing number of proprietary modeling
software that explores or includes the possibility of leveraging
GPU computational capabilities in one way or another.
Typically, an attempt to generically convert any model code
into GPU code will be less efficient than designing a dedicated
algorithm and implementation for a specific problem. This, in
turn, can typically be significantly further improved by applying
GPU-specific technical optimizations. In any case, for models
that meet the broadly outlined GPU-suitability criteria and are
computationally demanding, a GPU seems to be an excellent
path to one- or two-orders-of-magnitude performance
improvements, with somewhat lower, but still significant, cost
savings versus CPU-based approaches.

CONTACT
Karol Maciejewski
karol.maciejewski@milliman.com

Chad Schuster
chad.schuster@milliman.com

Jim Brackett
jim.brackett@milliman.com

Corey Grigg
corey.grigg@milliman.com

© 2026 Milliman, Inc. All Rights Reserved. The materials in this document represent the opinion of the authors and are not representative of the views of Milliman, Inc. Milliman does not
certify the information, nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent
review of its accuracy and completeness has been performed. Materials may not be reproduced without the express consent of Milliman.

GPU: Exploring use cases in actuarial modeling
Introduction, applicability, benchmarks, and cost-performance overview.

16
February 2026

http://www.milliman.com/
mailto:karol.maciejewski@milliman.com
mailto:chad.schuster@milliman.com
mailto:jim.brackett@milliman.com
mailto:corey.grigg@milliman.com

