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Graphical processing units (GPUs) have 

reached new heights of popularity with 

the advent of artificial intelligence (AI) 

models in recent years, which would not 

have been possible without them. They 

provide unmatched computational power 

for parallelizable calculations, hundreds 

of times faster than traditional CPU-

based computing. Can they be 

effectively used for actuarial modeling, 

and if so, for which use cases and how? 

A brief history of a GPU 
Modern GPUs appeared at the end of the 1990s, when 3dfx 

and NVIDIA released their first graphics cards with a dedicated 

processor to perform graphics-related calculations. This was a 

revolutionary idea: offloading some of the heavy calculations 

from the computer’s central processing unit (CPU) and freeing 

it for other tasks, at the same time allowing much faster 

graphics calculations due to the new processor’s specialization. 

The initial uses of hardware-accelerated graphics cards were 

video processing and gaming (particularly 3D games).  

During the 2000s, the spectrum of potential applications for 

GPUs has dramatically increased with the introduction of 

CUDA and OpenCL, two frameworks that allow users to submit 

custom calculations to be computed on the GPU, not restricting 

users to the predefined graphics routines implemented by the 

chip producers. CUDA (originally: Compute Unified Device 

Architecture, although nowadays, it is rarely expanded) is a 

proprietary standard created by NVIDIA and is supported by all 

its devices, providing implementations in several popular 

languages, such as C, C++, C#, Fortran, Python, or Julia. 

OpenCL is an open standard supported by many companies 

(including NVIDIA and AMD). Currently, with NVIDIA achieving 

an almost monopolistic position in the GPU market, CUDA has 

emerged as a more popular choice for GPU computing 

applications. The introduction and evolution of these standards 

have paved the way for broadening the popularity of general-

purpose GPU computations (GPGPU). In 2016, AMD released 

ROCm, an open-source equivalent of CUDA for AMD GPUs, 

and although gaining traction, it is still significantly less popular 

than CUDA.  

Over the years, as implementations and libraries in more 

languages were added, CUDA gained increasing popularity in 

computational physics, biology, chemistry, and finance. Its first 

significant expansion to a wider audience came in the second 

half of the 2010s, together with blockchain and cryptocurrency 

hype, in which GPUs were heavily used for cryptographic 

calculations. An even greater explosion in GPU use came in 

the 2020s with mass adoption of a new wave of GPT AI models 

(generative pre-trained transformers), which currently require 

GPUs for training and efficient execution of user queries, 

exploiting computations orders of magnitude faster than those 

achievable on CPUs.   

CPU versus GPU 
So, what makes a GPU so much faster than a CPU? A key 

aspect is a fundamentally different architecture. A typical CPU 

consists of a few (up to several dozen, in the case of advanced 

server processors) calculation cores, each extremely fast and 

able to compute complex tasks sequentially. The GPU, on the 

other hand, comprises thousands of cores, each of which can 

accommodate a subset of specific “simple” calculations; this 

arrangement opens the door to massively parallel execution. 

One can think about the following analogy, where the CPU is a 

sports car and the GPU is a cruise ship. Obviously, in a typical 

situation, getting from point A to B is faster with a sports car. 

However, if one needs to transport (tens of) thousands of 

people, being able to do so with one trip of the cruise ship 

significantly outperforms making thousands of trips with the 

sports car (if, of course, we assume that both points A and B 

can be reached by the car and the ship).  
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The above thought exercise also highlights another important 

characteristic of a GPU—all the passengers are traveling on 

the same route. Translating this back to computational terms, a 

GPU can execute highly parallel calculations by assigning each 

of its many cores to a data element, provided that the same 

operation is performed on each of them. This model of 

calculations is called SIMD (single instruction, multiple data).1  

Historically, PC CPUs have been single-core and focused on 

sequential execution. Over the years, they have been extended 

to have multiple cores and, in more recent years, even to 

include some SIMD-like instructions (for example, several 

versions of the AVX instruction set support vectorized 

operations). The base architecture, however, is subject to 

limitations on how dramatically it can change, as it needs to be 

able to handle legacy cases. GPUs, on the other hand, have 

been designed from scratch with a different purpose and 

execution model in mind, so they are still in a different league 

with respect to parallelizing calculations.  

Nowadays, there are many manufacturers (even if one is in a 

clearly dominant position), models, and generations of GPU 

cards available. Are all GPUs equal? Absolutely not. So, what 

is the best GPU to run a particular set of computations? The 

answer depends on the type of calculations needed and 

requires a deeper understanding of the GPU architecture and 

the different types of calculations it can handle.  

Understanding GPU performance 
The first point is the general-purpose calculation units 

themselves. There are several types of contemporary GPU 

cards. The main ones, and historically the first, are called 

CUDA cores in NVIDIA cards and Stream Processors in AMD 

cards. Although the naming differs between manufacturers, the 

concepts and functionalities are largely the same. In the 

remainder of this paper, we will use NVIDIA naming for 

conciseness. Typically, the number of CUDA cores constrains 

the maximum level of parallelization that can be achieved; 

more cores mean higher performance. This is partially true. In 

fact, there are several types of CUDA cores in each GPU, 

specializing in performing calculations on different types of 

numeric data. The number of CUDA cores reported as a single 

number in most marketing materials and simple technical 

specifications refers to the cores specialized for single-

precision floating-point calculations (denoted FP32, with 32 bits 

used to represent the number in computer memory). There are, 

however, several other types of numbers, each with a different 

type of CUDA core—for example, INT32 for integer numbers, 

FP16 for half-precision floating point numbers, or FP64 for 

double-precision floating point numbers. In most current 

 

1. In fact, the model utilized by GPUs is its close relative, called single instruction, 

multiple threads (SIMT). Explaining the technical differences between these 

are outside the scope of this paper. 

consumer- and even workstation-level GPUs, the number of 

FP64 cores is lower than the number of FP32 and lower-

precision cores. This disparity was present even in first-

generation GPUs but has been amplified in more recent 

generations, as the most common uses of GPGPU were 

focused on computations that do not require such high 

precision (e.g., most machine learning applications and 

generative AI use). Boosting performance in these areas (by 

increasing the number of relevant cores) has necessitated a 

sacrifice in other areas. Unfortunately, scientific (and actuarial) 

calculations typically require higher precision, so FP64 

performance is much more important. Although top-of-the-line 

server-grade GPUs in each generation have retained this 

capability for high-precision numbers, each successive 

generation comes with a heftier price tag.  

Given this trend, it turns out that a server-grade GPU from 

several generations ago might outperform some of the much 

more expensive current consumer or professional GPUs in high-

precision calculations. To compare different devices’ compute 

capabilities, instead of looking at the number of cores, it can be 

more instructive to look at FLOPS (Floating Point Operations Per 

Second), which, for GPUs, are typically measured with giga- or 

tera- prefixes (109 and 1012, respectively). 

FIGURE 1: SELECTED GPU COMPUTE CAPABILITIES OVER TIME 

GPU YEAR TIER 

F32 

TFLOPS 

F64 

TFLOPS 

NVIDIA 8800GS 2008 Consumer 0.26 N/A 

ATI Radeon HD 4870 2008 Consumer 1.2 0.24 

NVIDIA GTX 980 2014 Consumer 4.98 0.16 

AMD Radeon R9 295X2 2014 Consumer 5.73 0.72 

NVIDIA Tesla K80 2014 Server 4.11 1.37 

AMD FirePro W9100 2014 Server 5.24 2.62 

NVIDIA Tesla P100 2016 Server 9.53 4.76 

NVIDIA RTX 2080 2018 Consumer 10.07 0.31 

NVIDIA Tesla V100 2018 Server 14.13 7.07 

NVIDIA A100 2021 Server 19.49 9.75 

NVIDIA RTX 4090 2022 Consumer 82.58 1.29 

NVIDIA H100 2022 Server 51.22 25.61 

AMD Radeon MI300X 2023 Server 81.72 81.72 

NVIDIA H200 2024 Server 60.32 30.16 

NVIDIA RTX 5090 2025 Consumer 104.8 1.64 

Source: Compiled based on TechPowerUp GPU database2  

  

2. TechPowerUp. (n.d.). GPU Specs Database. Retrieved September 24, 2025, 

from https://www.techpowerup.com/gpu-specs/. 

https://www.techpowerup.com/gpu-specs/
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In a sample from hundreds of models over the years, it is clear 

that contemporary consumer GPUs provide the best value for 

F32 calculations, whereas 10-year-old server GPUs still 

outperform them for F64 calculations. In the last few 

generations, an even stronger emphasis has been placed on 

the F16 and on new types of cores, namely tensor cores 

(NVIDIA) or matrix cores (AMD); these cores are heavily 

utilized in generative AI applications (and for brevity are not 

shown in the table above). 

Tensor cores perform, in a single processor cycle, a fused 

multiply-add (FMA) operation on matrices, bringing 

parallelization to another level. Not every computational 

problem relies on or can be reformulated to this kind of 

operation, but the recent generative AI models depend heavily 

on it. As generative AI is responsible for most recent GPU 

demand, it is no surprise that manufacturers have been 

focusing on this new type of core. However, unless an actuarial 

model can be formulated as a series of matrix multiplication 

and additions, this feature of the latest GPUs will be of limited 

usefulness in the actuarial domain. Even for cases where a 

model can leverage FMA operations, tensor cores are 

specialized for specific types of numbers, typically 

accommodating lower-precision cases suitable for AI. 

Accordingly, high-precision FMA operations required for 

actuarial modeling will still be significantly less performant.  

Another consideration is memory availability in the GPU device 

(VRAM, from the original Video RAM). By design, GPUs 

require data to be in dedicated device memory and not in the 

general system memory (RAM). This means that the more 

VRAM the device has, the more data it can store and the more 

calculations it can execute in parallel (this is true for data-

intensive problems, which have relatively large data input per 

computation unit). There are also differences between GPU 

generations and models regarding the type of memory used 

and the corresponding data throughput, and server-grade 

GPUs tend to have more advanced, faster memory dies. As we 

will see later in this paper, this can also make a substantial 

difference for some applications.  

The computational power of GPUs comes with an increasingly 

high price tag. Before the cryptocurrency boom, a top-tier 

consumer GPU would cost significantly less than $1,000 (e.g., 

NVIDIA GTX 1080 released in 2016 cost $599 at launch3), 

whereas a server-grade GPU would be around $5,000 (e.g., 

NVIDIA Tesla P100 released in 2016 cost $5,699 at launch4). 

However, since that time, there have been three notable 

events contributing to an extreme rise in price: 

 Demand surge due to cryptocurrency boom 

 Chip shortage and logistic problems during  

COVID pandemic 

 

3. TechPowerUp. (n.d.). NVIDIA GeForce GTX 1080. Retrieved September 24, 

2025, from https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839. 

 An even bigger demand increase due to the dawn  

of generative AI 

As a result, the recent top-tier consumer card, such as the 

NVIDIA RTX 5090, launched at $1,999, and a server-grade 

GPU, such as the NVIDIA H200 or AMD MI300X, will cost over 

$30,000. New GPU cards also have higher power consumption 

requirements, which additionally makes them more expensive to 

run and cool. For a company that utilizes cloud resources, it is 

certainly the case that the hourly cost of a GPU-equipped 

resource will be higher than that of a CPU-only calculation 

resource. The ratio of GPU-to-CPU hourly cost will vary based 

on the resources that one is utilizing, but whatever the selection, 

a comparison of total cost is clearly an important consideration.  

So, is it still worthwhile to go down the GPU path? What kind of 

real-world performance improvements are possible? There are 

many factors influencing this, and there are several things to 

keep in mind when faced with claims of “N times performance 

gains.” In the table below, we highlight a few key aspects: 

FIGURE 2: GPU-CPU PERFORMANCE GAIN FACTORS 

1. Computational problem 

The type of computational problem at hand will determine 

the possible performance gains. Some problems are 

much more suitable for GPU computing than others, as 

we will discuss in the next section of the paper.  

2. Reference CPU count 

What is the base CPU core count for the benchmark? 

The same use case might show a different gain factor if 

compared to a single CPU core or multicore run (typical 

for compute-heavy problems). 

3. Quality of the reference CPU code 

Level of optimization of the original CPU code. Often, the 

GPU code is written by more performance-aware 

developers and is simply better than legacy CPU code. In 

some cases, significant performance gains could be 

achieved just by refactoring the original CPU code.  

4. GPU used 

What generation and type of GPU is used in the 

benchmark? As shown in Figure 1, there are significant 

performance differences between GPU devices, so a 

benchmark from 2012 would likely underestimate today’s 

potential gains. 

5. Sample bias  

Use cases with higher performance gains are more likely 

to be published or publicized.  

 

4. TechPowerUp. (n.d.). NVIDIA Tesla P100 PCIe 16 GB. Retrieved September 

24, 2025, from https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-

gb.c2888. 

https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
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Bearing in mind the above, it is true that GPUs can provide a 

hundredfold increase in performance. In many cases, the gain 

factors will be lower, however, either because of the nature of 

the problem itself or because of the implementation on the 

GPU. As with CPUs, there can be a substantial difference 

between “GPU code” and “efficient GPU code,” and the latter 

requires a deep understanding of the GPU architecture. We will 

touch upon this topic in the last section of this paper.  

In Figure 3, we present selected examples of speed-ups across 

different application areas that have been described online.  

FIGURE 3: EXAMPLE SPEED-UPS IN REAL-WORLD APPLICATIONS 

USE CASE 
CPU  

CORES 

GPU  

USED 

SPEED- 

UP 

Protein structure 

inference5 
128 NVIDIA L40S 177x 

Graph community 

detection6 
112 NVIDIA H100 47x 

Simulating stock 

market mid-price for 

HFT7 

N/A NVIDIA H200 114x 

Weather forecasting 

(WRF-WSM5)8 
1 NVIDIA C2050 403x 

Data sources: See footnotes. 

There is also an interesting presentation available on the 

NVIDIA website9 highlighting performance gains across many 

use cases in various domains (biology, chemistry, physics) 

from using GPUs. However, as it was last updated at the end 

of 2012, the numbers would likely be very different when 

reevaluated on today’s GPUs.  

Suitability for GPU processing 
We have already indicated in the earlier sections of this paper 

that some computational problems are more suitable for GPU 

processing than others. Although the “best” group might exhibit 

performance improvements of hundreds of times, the “worst” 

will very likely show performance deterioration.  

 

5. Technical Blog. (2025, September 10). Accelerate protein structure inference 

over 100x with NVIDIA RTX PRO 6000 Blackwell server edition. NVIDIA 

Developer. https://developer.nvidia.com/blog/accelerate-protein-structure-

inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/. 

6. Technical Blog. (2025, September 23). How to accelerate community detection 

in Python using GPU-powered Leiden. NVIDIA Developer. 

https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-

python-using-gpu-powered-leiden/. 

7. Technical Blog. (2025, March 4). GPU-accelerate algorithmic trading 

simulations by over 100x with Numba. NVIDIA Developer. 

https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-

industry/gpu-accelerate-algorithmic. 

Three main elements are key in determining if a given problem 

is worth the while implementing on a GPU: 

FIGURE 4: KEY ASPECTS OF GPU SUITABILITY 

1. Data size 

There needs to be sufficient data to saturate thousands of 

GPU cores and offset the cost of transferring it to the 

device VRAM. At the same time, the problem ideally 

should be more compute-intensive than data-intensive.  

2. Independence of calculations 

Ideally, the calculation for each data element should be 

independent of the other elements.   

3. Degree of code branching 

The code executed in parallel should be as uniform across 

GPU cores as possible. Many conditional paths that 

depend on data might decrease performance. 

The first aspect relates to the fact that there is a (quasi-)fixed 

cost of initializing calculations on the GPU. If the problem is too 

small, the initialization itself will take longer than solving it on a 

CPU, so the performance will be, in fact, worse. A dominant 

component of that initial cost can be the transfer of data to the 

dedicated memory of the GPU. Even though RAM is 

considered to be the fastest possible data storage option, 

transferring data between the host (general computer RAM) 

and the device (GPU RAM) introduces latency that becomes 

significant if subsequent compute times are too short.  

The second aspect is directly related to the GPU architecture. 

As mentioned, the GPU consists of thousands of computational 

cores, and its power therefore lies in its being able to process 

calculations in a massively parallel way. If calculations on 

different cores must stop and wait for other cores to exchange 

information, or if not enough cores are able to process the 

calculations simultaneously, this will leave the GPU 

underutilized and therefore not efficiently used. The best 

problems for the GPU will consist of many independent atomic 

calculations, each of which can be completed by a single GPU 

core—such as independent Monte-Carlo simulations, modeling 

individual policies, or performing the same element-wise 

calculation on large arrays of data.  

  

8. Ridwan, R., Kistijantoro, A. I., Kudsy, M., & Gunawan, D. (2015). Performance 

evaluation of hybrid parallel computing for WRF model with CUDA and 

OpenMP. IEEE Xplore. https://ieeexplore.ieee.org/document/7231463. 

9. Berger, M. (2012, December 21). NVIDIA computational chemistry & biology. 

NVIDIA. https://www.nvidia.com/docs/IO/122634/computational-chemistry-

biology-benchmarks.pdf. 

 

 

 

https://developer.nvidia.com/blog/accelerate-protein-structure-inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/
https://developer.nvidia.com/blog/accelerate-protein-structure-inference-over-100x-with-nvidia-rtx-pro-6000-blackwell-server-edition/
https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-python-using-gpu-powered-leiden/
https://developer.nvidia.com/blog/how-to-accelerate-community-detection-in-python-using-gpu-powered-leiden/
https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-industry/gpu-accelerate-algorithmic
https://resources.nvidia.com/en-us-financial-service/en-us-financial-services-industry/gpu-accelerate-algorithmic
https://ieeexplore.ieee.org/document/7231463
https://www.nvidia.com/docs/IO/122634/computational-chemistry-biology-benchmarks.pdf
https://www.nvidia.com/docs/IO/122634/computational-chemistry-biology-benchmarks.pdf
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When some inter-dependency exists between data cells, it is 

still possible to utilize the GPU and achieve significant 

improvements in performance, but typically the benefits will be 

less prominent than in completely independent cases. In 

programming terms, map() operations (such as multiplying 

each element by a factor, where the dimensions of the input 

and output are the same) tend to be more efficient on GPUs 

than reduce() operations (such as performing a group-by 

aggregation of the elements, where the dimension of the input 

exceeds the dimension of the output). Reduce-type operations 

might have to be reformulated to take maximum advantage of 

the parallelization to become truly efficient on GPUs.  

Finally, the third aspect refers to a more technically detailed 

feature of GPU—the way calculation execution is organized. 

Without getting into too much technical detail, the performance 

of a GPU will be best if individual calculation cells follow the 

same (or very similar) linear path of execution. If the calculation 

contains many “if-elseif-else” statements, creating a lot 

of possible branches, execution performance will deteriorate. 

This is because certain groups of GPU cores must start and 

end their computations at the same time, and moreover, 

synchronization points for those cores must occur at the same 

point in the code. In the best case, this might result in some 

cores waiting for the ones with longer execution branches; in 

the worst case, the wait might be indefinite if some branches 

do not converge to the synchronization point. We take a look at 

the tip of the iceberg related to these more technical topics in 

the next section. 

GPU architecture fundamentals 
Until now, we have only scratched the surface of the GPU 

architecture. In this section, we will take a slightly deeper look 

at this, as efficient use of GPUs for modeling requires an 

understanding of their architecture. This is by no means an in-

depth or complete explanation, but it presents a few selected 

key concepts in a simplified way.10 

As mentioned earlier, a single GPU consists of thousands of 

cores (in NVIDIA GPUs, also called ‘CUDA cores’). These are 

physically organized on the GPU into streaming 

multiprocessors (SMs), subdivided into streaming processors 

(SPs). Cores in a single SP share control logic and in a single 

SM share a dedicated on-chip memory (called shared 

memory), significantly faster than the global off-chip VRAM. 

The number of SMs and cores per SM, as well as the amount 

of shared memory available in each SM, varies between 

different models and generations of GPUs. 

 

10. For a comprehensive overview, see Nvidia CUDA toolkit documentation. 

Retrieved December 3, 2025, from https://docs.nvidia.com/cuda/. 

As indicated previously, modern GPUs have even more types of 

cores present, specializing in different types of calculations. The 

exact types and numbers vary by GPU architecture and model. 

Figure 6 shows a simplified architecture of a single processor of 

an NVIDIA Ampere GPU (A100) streaming multiprocessor with 

(among others) 16 INT32, 16 FP32, 8 F64, and a tensor core for 

the aforementioned FMA matrix operations. A single SM in this 

architecture has 4 processors like the one depicted and includes 

some additional special functions units (SFU, e.g. for 

trigonometric function calculation) in each. 

FIGURE 6: NVIDIA A100 STREAMING PROCESSOR ARCHITECTURE 

(SIMPLIFIED) 

 

When a computation unit (also referred to as a CUDA kernel) is 

executed on a GPU, it is mapped to a set of fundamental GPU 

execution units—threads. Disregarding, for the sake of this 

explanation, more complex cases, we can assume that a single 

thread corresponds to a single CUDA core on a single data 

element on which computations are to be performed. These 

threads are organized into a thread grid and subdivided into 

thread blocks. The number of threads in a block and the 

number of blocks in a grid are parameters determined by the 

program invoking GPU computations. Based on these 

parameters and the hardware limitations of the specific GPU 

device used, thread blocks are allocated and queued to SMs 

for execution. 
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https://docs.nvidia.com/cuda/
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FIGURE 7: ORGANIZATION OF THREADS INTO BLOCKS AND GRID 

 

Subdivision into blocks is important because threads in the 

same block enjoy several privileges that threads from separate 

blocks do not, as they are executed on a single SM. First, 

threads within one block all have access to the same shared 

memory of the SM and can exchange information this way. 

Second, they can introduce a certain level of dependency 

between otherwise independent threads by being able to wait 

at a specific point in the code that calls for synchronization and 

to continue only after all of them have reached that point, a 

technique known as barrier synchronization. This allows all 

threads in the block to occasionally update shared information 

that could be used as input to the next stage of parallel 

calculations. Another element shared by the threads in one 

block is a register file, which is a dedicated, fast on-chip block 

of memory to store local variables for each thread.  

An important concept in understanding parallelism on the GPU 

is a thread warp. This is the smallest group of threads that is 

executed simultaneously in an SM. For all NVIDIA GPUs to 

date, the size of this group has been set to 32 threads, but 

based on the documentation, it can be changed in the future. 

To achieve maximum performance, all threads in a warp can 

only execute the same instruction at any given time (although 

on different data elements). However, this becomes a 

constraint if the code execution in different threads diverges. 

Divergent threads in a single warp decrease efficiency, as 

those threads must wait for each other as different code 

branches are executed. This is the reason GPU code should 

be as uniform as possible across threads, and at the very least 

ensure that data elements with different operations (e.g., if-else 

branches) are not executed in the same warp. 

Last, but not least, is the matter of memory use. Many types of 

memory must be considered when dealing with a GPU; not 

understanding the differences has the potential to significantly 

degrade performance of the code. The first major difference is 

the speed of the general-purpose computer RAM and the GPU 

VRAM. Nowadays, the former is typically a DDR5 type of 

memory, whereas in GPUs, this differs between GDDR6 (in 

consumer GPUs) and HBM2/HBM2e (in server GPUs). Even 

though RAM is customarily considered the fastest data source 

in a computer, as shown in Figure 8, GPU memory is roughly 

10x–20x faster. This should clarify why managing the transfers 

between RAM and VRAM is such a critical area to optimize 

when aiming for high performance.  

FIGURE 8: MEMORY THROUGHPUT COMPARISON (GB/S) 

 

Data source: BittWare Article, Comparing DDR4 and DDR5 Memory. Bandwidth for FPGA Accelerator Cards1112 

  

 

11. BittWare. (n.d.). Comparing DDR4 and DDR5 memory bandwidth for FPGA 

accelerator cards. https://www.bittware.com/resources/ddr4-and-ddr5-

performance-comparison/. 

12 Double appearance of DDR4-2400 with different results is due to single-

channel (lower result) and dual-channel (higher result) configuration.  
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However, the VRAM throughput of the global GPU memory is 

still considered very slow in GPU computation. Depending on 

the specific GPU considered, shared (and register) memory 

bandwidth can reach more than 12,000 Gb/s13 (for Nvidia V100 

GPU, newer GPUs have an even better performance), which is 

another 15x faster than VRAM. It is worth noting that the 

capacity of global memory in a GPU is usually measured in 

gigabytes, whereas each SM’s shared (and register) memory is 

only several hundred kilobytes, so their memory usage models 

are very different. 

As mentioned at the start of this section, this overview barely 

touches the tip of the iceberg representing GPU architecture, 

its constraints, and dependencies. For readers interested in a 

more extensive and technical description, we recommend 

more detailed material available, for example, in NVIDIA’s 

CUDA Programming Guide. A thorough understanding of 

these concepts is a prerequisite for writing a truly performant 

GPU code.  

Actuarial problems and GPUs 
There are a variety of computationally intensive problems 

actuaries encounter for which a GPU may offer performance 

improvements. The primary factors that determine the 

suitability of a problem for a GPU have been discussed. In this 

section, we will describe general types of problems in actuarial 

science and a variety of problems that we have implemented 

on a GPU.  

ASSET–LIABILITY MANAGEMENT 

A broad category of modeling in the insurance industry is asset-

liability management (ALM). The examples that follow illustrate 

the usage of a GPU to model assets, liabilities, or both. A more 

complicated aspect of ALM modeling is when there is an 

interdependence between assets and liabilities. There are 

several approaches to designing such a model. The two most 

common in Europe are full ALM (also called dynamic) and 

flexing-based ALM. The former relies on modelling liabilities and 

assets period by period and directly including the effects of one 

side on the other. That requires aggregation and allocation 

calculations in each period. As mentioned in an earlier section, 

this kind of reduce operation scales less efficiently for 

parallelization than simple map operations. This compounds the 

time-dimension interdependency already present in the liability 

cash flow projection modeling. This kind of model is also typically 

very memory-intensive, as it requires all liability and asset 

information to be kept in memory during all calculations.  

 

13. Jia, Z., Maggioni, M., Smith, J., & Scarpazza, D. P. (2019, March 18). 

Dissecting the NVidia Turing T4 GPU via microbenchmarking. Citadel, 34. 

https://arxiv.org/pdf/1903.07486. 

Flexing approach, on the other hand, allows first projecting the 

deterministic base liability cashflows (e.g., before any impact 

from market-related factors, such as profit-sharing) for the 

whole projection period and then applying factor-based scaling 

(flexing) to these cashflows based on specific investment 

results from each stochastic economic scenario, period by 

period. This approach requires a sacrifice of some precision, as 

it is typically done at an aggregate level of liability cash flows 

(e.g., product/technical guarantee rate level), but is less 

memory- and computation-intensive. It also removes one of the 

dependencies and the need to aggregate–allocate at each step 

of the calculations, which makes it notably more suitable for 

GPU computations. A similar approach for assets could be 

considered, in which gross asset cash flows are pre-projected 

independently, aggregated to the granularity of an 

investment/disinvestment algorithm, and potentially scalar 

overlays such as defaults. Then, factor-based scaling is applied 

based on projected purchases, sales, and defaults. 

The general problem with a complete ALM calculation chain for 

GPU computations is that, even with the flexing approach, 

there are still many very diverse calculations. This departure 

from uniform and linear flow across threads (in the same warp) 

is far from ideal and poses significant challenges to an efficient 

GPU implementation. It is, of course, possible to implement the 

complete flow on a GPU, or to select the most computationally 

intensive parts for GPU execution while keeping the higher-

level flow on CPU. One could also try to reformulate the typical 

ALM approach to better fit the GPU paradigms. 

For one of its clients in France, Milliman has built a simplified 

prototype ALM model supporting both flexing and full dynamic 

approaches and running both on CPU and GPU. In our 

benchmark results for the client, we saw around 10x 

performance increase over a comparable multi-CPU run 

(based on eight cores, 2,000 stochastic simulations, 100k 

policy portfolio, and 5,000 asset portfolio and flexing model). 

This was based on a very naïve CPU-to-GPU code 

conversion without any specific optimization around, for 

example, memory transfers or GPU architecture, as this time-

boxed experiment was ancillary to primary project objectives. 

We also observed that for some parts of the calculations, 

performance improvements were significantly higher 

(reducing runtime by up to 95%, e.g., economic scenario data 

transformations or generating outputs), whereas for others, 

those improvements were much smaller (reducing runtime by 

only around 50%, e.g., aggregations of liability cashflows or 

setting up model structure).  

  

https://arxiv.org/pdf/1903.07486
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Life liability products 
A broad class of problems that fit the GPU model well is 

creating cash-flow projections of life insurance liabilities. If a 

company wants to do it at the most detailed level—policy or 

coverage—this will mean millions of policies projected over 

several decades. Such models can be quite heavy to run, even 

without involving stochastic scenarios (which could be applied, 

for example, to mortality or market data, and therefore increase 

both complexity and computational requirements). Even a 

simple liability cashflow projection model has one potential 

drawback for GPU conversion, as there is an interdependency 

within the projection along the time dimension (i.e., values at t 

are based on values at t-1), which, to some extent, limits the 

principle of independence of atomic calculations submitted to 

GPU threads.  

We have a few examples of this type of modeling in subsequent 

sections of this paper. One can also explore a simplified case, 

such as this 2023 Milliman White Paper, “Building a high-

performance in-house life projection and ALM model: 

Architecture and implementation considerations in Python.”14 

The focus of that paper was different, but it also shows a 20-fold 

increase in performance after translating the model into GPU-

enabled code (for a sample size of 0.5 million policies). 

VARIABLE ANNUITIES 

A Variable Annuity (VA) is a life insurance product, often with 

embedded options, that has exposure to the capital markets. 

Essentially, a VA is a tax-advantaged way to invest in the 

market, often with guarantees to protect the policyholder from 

downside risk.  

Management of a block of VAs has high computational 

demands due to risk management and financial reporting 

requirements that require projecting cash flows for both risk-

neutral and real-world simulations over many economic 

scenarios. The payoff profile of a VA is path-dependent, which 

creates interdependence in the time dimension, limiting that 

aspect of parallelism.  

Here are some examples of the types of metrics companies 

may need to run: 

 Risk-neutral valuations for market sensitivities for  

hedging, pricing, and/or reserving 

 Real-world simulations for statutory reporting and  

capital calculations 

 Stochastic-on-stochastic simulations to test hedging 

strategies, run plan scenarios, and/or generate results  

of a clearly-defined hedge strategy (CDHS) for  

financial reporting 

 

14. Maciejewski, K., Echchelh, M., & Sznajder, D. (2023, March 13). Building a 

high-performance in-house life projection and ALM model: Architecture and 

implementation considerations in Python. Milliman. 

https://www.milliman.com/en/insight/building-in-house-projection-alm-model-

python. 

VA is a separate account product that typically has little general 

account exposure at the contract level, resulting in minimal 

interdependence between contracts for most types of runs. As 

such, the data set is highly parallelizable for many of the 

intense computational workloads that insurers need to 

generate. We have built GPU models for stochastic-on-

stochastic, risk management, hedge simulation, and financial 

reporting in both C++ and Python with Numba.  

FIXED INDEX ANNUITIES 

The Fixed Index Annuity (FIA) is another type of annuity in the 

life insurance space that has capital markets exposure. As with 

the VA, the FIA has path dependence and metrics that require 

projection of liability cash flows. Historically, risk management 

of these products was the primary computationally intensive 

metric, but the advent of VM-22, a U.S. principles-based 

reserving framework requiring valuation under stochastic real-

world scenarios, has added additional areas of heavy 

computational demand.   

Unlike VA, FIA is a general account product that may add an 

additional layer of complexity from a modeling perspective, 

discussed in the ALM section above. For some types of runs, 

the evolution of the general account in aggregate is necessary 

to capture at a policy level. This additional layer of dependence 

between the contracts reduces parallelism. The degree to 

which this may impact GPU throughput will be dependent on 

the number of contracts and/or scenarios being run and the 

number of times the calculation requires synchronization 

across contracts.  

Our experience modeling FIA on GPUs has been focused on 

risk management and hedging using models built in C++. For 

this paper, we built a toy model in Python/Numba to simulate 

pricing an FIA with a Guaranteed Lifetime Withdrawal Benefit 

(GLWB) in the VM-22 framework.  

The model is not fully developed from an assumptions and 

product feature perspective, but is a means of looking at 

relative impacts of modeling decisions and constraints. All FIA 

simulations are for 50 years at a monthly frequency over 1,000 

real-world scenarios. The model was run on a CPU and GPU 

using Python with Numba.  

Several observations from this exercise illustrate points 

highlighted elsewhere in this paper. In particular, this exercise 

gives a sense of how the design of the implementation may 

change as the problem evolves, the impact of memory layout, 

and how reducing parallelism can impact performance. 

  

 

 

https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python
https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python
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The runtime comparisons that follow are based on this model 

and are on machines from Azure that are running the Linux 

operating system:  

 Standard_HB176rs_v4, a high-performance CPU VM with 

176 CPU cores priced at $7.20 per hour 

 Standard_NC80adis_H100_v5, sporting two H100 GPUs 

priced at $13.96 per hour 

All runs are double precision (float64) and do not include 

input/output or compile time in the runtime. The GPU execution 

time includes memory transfer to and from the GPU. It should 

be noted that this model is only utilizing only one GPU since it 

is not equipped to utilize multiple GPUs. 

Figure 9 shows results under the assumption that the contracts 

have no interdependence. In other words, each policy is 

completely independent of any other policy. With that in mind, 

this run is a single kernel call to the GPU to calculate all 

policies, scenarios, and timesteps. 

FIGURE 9: FIA PRICING BENCHMARK CPU TO GPU COMPARISON 

(EXECUTION TIME) 

POLICIES 

CPU  

(172 CORES) 

GPU  

(1 GPU) RATIO 

32 0.05  0.01  3.98  

128 0.14  0.02  6.47  

1280 1.03  0.12  8.52  

20480 15.91  2.67  5.95  

81920 63.82  10.24  6 

The results demonstrate that even for a small number of 

policies, the GPU shows a runtime improvement over the CPU. 

Although the number of policies is small, each policy accounts 

for 600,000 iterations through the logic (scenarios × timesteps). 

The CPU and GPU both exhibit a nonlinear response to the 

increase in policies initially since neither is saturated with a 

small number of policies. As the number of policies increases, 

both the CPU and GPU timings scale approximately linearly 

and approach a sixfold relative performance improvement of 

the GPU relative to the CPU.  

The next part of the exercise is to consider what happens if 

there is dependence between the policies. This is the type of 

complication that one would encounter when simulating 

dynamic asset modeling, as described in the ALM section. To 

accomplish this, we will run the kernel multiple times to move 

the policy information along each scenario for a specific 

number of timesteps, and then return control to the CPU. We 

want to store the state of each policy by scenario on the GPU 

to avoid unnecessary data transfers.  

The implementation of the above model  loaded a single 

representation of the policy data in global memory. For this 

exercise, however, we need to store each policy by scenario to 

capture the policy state between kernel calls. In the initial 

version, the model reads the policy data from global memory 

and loads it into local data structures. This design reduces the 

number of calls to global memory, but to accommodate this 

exercise would necessitate an explicit update of the information 

in global memory to capture the state when the kernel cedes 

control back to the CPU. To avoid an explicit update and 

repeated loading into the local memory structures, the model 

was adjusted to operate directly on data from global memory. A 

comparison of the original implementation to the new version is 

shown in Figure 10. 

FIGURE 10: FIA PRICING BENCHMARK IMPLEMENTATION COMPARISON 

(EXECUTION TIME) 

POLICIES ORIGINAL ALTERNATIVE 

PERCENT 

INCREASE 

32 0.01  0.09  612% 

128 0.02  0.20  848% 

1280 0.12  1.82  1405% 

20480 2.67  28.74  975% 

81920 10.24  114.79  1021% 

The impact of the implementation change was an increase in 

runtime by almost 11 times. This reduction in performance is 

likely tied to two related things. The new model has many 

more calls to global memory than the previous version, and 

the memory layout in global memory for the policy data 

structure is not implemented in a way to facilitate coalescing 

of memory. It is possible to alter the way the policy data is 

stored and used, but the resulting implementation would be 

tedious and less maintainable.  

The final version of the model for this exercise was a hybrid of 

the original and proposed models. We reverted to utilizing local 

storage to minimize calls to global memory and added logic to 

update an expanded representation of the policy data in global 

memory. The result was performance in line with the initial 

version of the model.  

With this new version in place, we returned to the exercise and 

ran the model with varying frequencies of checkpoints. The 

label “Frequency” in Figure 11 is the frequency at which we 

returned control to the CPU. At the end of each call to the 

kernel, we copied the entire results data structure back to the 

CPU to emulate possible methods for implementing the asset 

strategy. We moved the results from the GPU back to the CPU 

to account for the possibility that the CPU would run the asset 

strategy. If the asset strategy were also run on the GPU, there 

would be no need to move the results to the CPU. Figure 11 

shows the percentage increase in runtime when simulating the 

flow of control at varying frequencies to run an asset strategy. 
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FIGURE 11: FIA PRICING BENCHMARK CPU CHECKPOINT FREQUENCY 

(EXECUTION TIME) 

FREQUENCY TIME (S) PERCENT INCREASE 

None 14.59  0% 

Annual 58.18  299% 

Quarterly 85.53  486% 

Monthly 123.47  746% 

The reduction in performance is from the transfer of data back to 

the CPU and the reloading of data from global memory to the 

local data structures. The impact of the latter would be reduced 

by the restructure of the policy data contemplated above. 

ASSET VALUATIONS AND HEDGING 

Another example from the area of asset–liability and risk 

management is the valuation of assets in an insurance 

company’s portfolio. Nowadays, companies perform a quickly 

increasing number of projections for various purposes: 

 Best-estimate calculations for products with financial  

profit-sharing 

 Risk-based capital calculations  

 Sensitivities for hedging and capital optimizations 

For this paper, we have developed a simple engine for bond 

market valuation using the discounted cash flows approach. It 

can be shown that this problem fits the criteria of GPU-

suitability very well.  

Typical bond portfolios held by life insurance companies vary 

from several hundred to thousands of individual instruments, 

with more added in each projected reinvestment cycle to reflect 

the simulated purchases. Each bond needs to be valued at 

each projection step until its maturity and typically across a 

number of stochastic scenarios. Therefore, the dimensionality 

of the problem (data size) grows quickly: [bonds x 

projection steps x scenarios]. 

Valuation of each cell of this array can be considered 

independent of the others. One might argue (and rightfully so) 

that, at least in some cases, fixed-rate bond cash flows from 

one projection step to another remain largely unchanged and 

can be reused. This can be considered, however, one case for 

which the benefit of independence is bigger than the efficiency 

of performing each calculation exactly once. The simplicity of 

the implementation and performance gain outweigh the need to 

repeat the cash flow calculation.  

The third key element—code branching—is also limited. Each 

bond has a different maturity term, so although the exact 

number of computations in each cell varies, the logic of the 

calculation flow remains uniform and linear. 

In the valuation engine developed for this paper, we have 

made several simplifying assumptions, which facilitated the 

development without impacting the observations and 

conclusions: 

 We used fixed-coupon bonds only 

 We generated random discount factors 

 We performed valuations annually from start of the 

projection until maturity of the last bond in the portfolio 

For the benchmark exercise, we used a dummy bond portfolio 

with an average term-to-redemption of 20 years (maximum 40 

years, minimum 1 year), a fixed coupon payment, and varying 

coupon payment frequencies (from monthly to annual). The 

sample size mentioned in the following figures refers to the 

(rounded) total number of market value calculations (equal to 

the product of three dimensions: number of bonds, number of 

stochastic simulations, and number of years until maturity for 

each bond). As an example, the 10-million sample corresponds 

to 550 bonds, 960 simulations, and an average of 19.4 years 

until maturity (giving a total of 10,243,200 calculations). 

The implementation was done in Python using Numba (for 

both CPU and GPU variants), using single precision (float32) 

and Fortran-ordering of array elements in memory (which, in 

our implementation, facilitated splitting arrays in the multi-

GPU context). 

For the main part of benchmarking this use case, we used a 

machine with an EPYC 7402P CPU, 256GB RAM, and 4x 

NVIDIA Tesla P100s with 16GB VRAM each. For the test runs, 

we used different combinations of CPU cores and GPUs, as 

well as various sample sizes. The P100 is a relatively old 

generation of GPU (based on the Tesla Pascal architecture, 

introduced in 2016), so we also include the computation time 

for a modern H100 GPU with 80GB VRAM, provisioned from a 

specialized GPU-cloud instance provider.15 

We timed the execution on the host side using the standard 

Python time library, where relevant, and, where possible, split 

the total execution into loading data into VRAM, pure 

computations, and retrieving results from VRAM. Loading data 

from disk and generating discount factors are not included in 

the results. 

  

  

 

15. See the RunPod homepage page at https://www.runpod.io. 

https://www.runpod.io/
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FIGURE 12: BOND VALUATION BENCHMARK (TOTAL EXECUTION TIME IN SECONDS) 

SAMPLE SIZE 1 K 10 K 100 K 1 MLN 10 MLN 100 MLN 1 BLN 10 BLN16 

CPU: 1 core  0.0012   0.0097   0.0862   0.8518   8.5158   85.0788   849.2658   8562.08  

CPU: 16 cores  0.0028   0.0030   0.0226   0.1891   1.5362   15.0580   147.3351   1462.8326  

GPU: 1x P100  0.0048   0.0069   0.0094   0.0429   0.0753   0.4087   3.8794   N/A17  

GPU: 4x P100  0.0098   0.0090   0.0082   0.0151   0.0439   0.2114   1.6167   16.1857  

GPU: 1x H100 0.0019 0.0028 0.0039 0.0171 0.0355 0.2899 2.8836 27.2149 

FIGURE 13: BOND VALUATION BENCHMARK (COMPUTATION ONLY, TIME IN SECONDS) 

SAMPLE SIZE 1 K 10 K 100 K 1 MLN 10 MLN 100 MLN 1 BLN 10 BLN 

CPU: 1 core  0.0012   0.0097   0.0862   0.8518   8.5158   85.0788   849.2658   8562.08 

CPU: 16 cores  0.0028   0.0030   0.0226   0.1891   1.5362   15.0580   147.3351   1462.8326  

GPU: 1x P100  0.0007   0.0002   0.0005   0.0029   0.0245   0.2285   2.2136   N/A  

GPU: 4x P100  0.0044   0.0015   0.0029   0.0025   0.0236   0.1213   0.8373   9.7637  

GPU: 1x H100 0.0003 0.0003 0.0003 0.0008 0.0064 0.0621 0.6181 6.1683 

FIGURE 14: PERFORMANCE IMPROVEMENT GPU TO CPU X16 

 

 

16. Due to very high volatility of the time required to initialize the GPU and return control to the CPU, the number in the last row of this column has 

been calculated as a proxy using actual memory transfer times and calculation time, and an average overhead from 1 billion sample runs. 

17. A single P100 GPU with 16 GB VRAM is not able to handle that much data. 
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Figure 12 presents an overview of the results in terms of total 

execution time, and Figure 13 presents the results in terms of 

pure computation time (which is the same in the case of CPU-

based benchmark; we excluded the disk to general memory 

loading time, as it is the same regardless of CPU or GPU being 

used. It is worth noting that in the case of computing resources 

provisioned in the cloud, these fixed overhead times, including 

the time it takes to boot up and prepare a virtual machine for 

calculation, will be more expensive for the GPU machine, given 

that it would typically have a higher cost per unit of VM uptime. 

Figure 14 shows comparative graphs of performance 

improvement factor between various GPU runs and the 

corresponding 16-core CPU run, which we believe is more 

representative and realistic than running on a single core. From 

this overview, we can clearly see that for small samples, the 

benefits of using a GPU are small, as the overhead related to 

the GPU initialization and use overshadows the pure 

computational benefit. For this model, it seems a sample size 

between 10 and 100 million bond valuations is required to 

realize stable execution times, reflecting a performance 

improvement of approximately 40x for the older P100 GPU and 

50x for the newer H100. However, when looking at pure 

computational time, excluding data transfer times, we see that 

at only approximately 1 million calculation cells, a stable level 

of around 65x improvement is reached on the P100 GPU and 

an impressive factor of 240x on the H100 GPU. 

In a multi-GPU context, it is important to mention that there are 

different ways multiple devices can be utilized to distribute 

calculations. The approach used in this benchmark was to 

create separate CPU threads (using the standard Python 

threads library), one for each GPU device, and let each thread 

manage the transfer of its relevant chunk of data, the CUDA 

kernel invocation, and the transfer of the results back to 

general RAM. The final step was to put the partial results 

together into a single array to align the final output with the 

single-GPU and -CPU cases. 

The benefits observed when using multiple GPUs were 

higher, as expected, but did not demonstrate perfectly-linear 

scaling with the number of GPUs18, suggesting an increase in 

the overhead when working with several devices. In terms of 

total execution, a stable point seems to be achieved between 

100 million and 1 billion cells (25 million and 250 million per 

GPU) at an improvement factor of around 80x. In terms of 

pure computation, there is apparently a bit more stability, with 

the improvement factor increasing to reach 120x for 100 

million samples.  

 

18. A point worth noting—this is also in line with what has been observed when 

increasing the CPU core count. 

Keeping in mind that these are factors of improvement over a 

16 core CPU run, and even taking into account the time spent 

on data transfers between memory types, these results still 

show an very impressive performance gain that would bring a 

model runtime of 1 hour to just over 1.2 minutes given a single 

modern GPU (and 1.5 minute given a cheaper, older GPU). 

Achieving the same result using a CPU grid would require 

utilizing almost 600 cores!  

Using multiple GPUs in parallel will likely be overkill for most 

actuarial workloads, but it can help when the data size exceeds 

the capability of a single GPU (as was the case with the 10-

billion-sample dataset in this benchmark). Even then, an 

alternative is to split the data into chunks and submit the 

calculations to the same GPU in a sequence. Moreover, with 

modern server-grade GPUs having memory of 100+ GB, 

memory exhaustion on a single device by actuarial model data 

is unlikely. 

The implementation of this benchmark case was done in a 

relatively “naïve” way, as far as GPU optimizations are 

concerned. As we will discuss in the next section, there is 

potential for significant improvement if GPU architecture-

specific details are taken into account while fine-tuning the 

code. Similarly, CPU performance could be enhanced using 

optimizations targeted at specific hardware topology and 

microarchitectural elements of high-performance machines. 

Each requires a substantial amount of highly technical 

knowledge, which is likely unknown to even the most tech-

savvy actuaries. Therefore, we see this simple approach as 

more realistic for an actuarial modelling use case. 

Efficient GPU modeling 
The technical expertise required to utilize GPUs has diminished 

over time with advances in CUDA and with the accessibility of 

CUDA through high-level languages. The need for advanced 

technical expertise to efficiently utilize a GPU persists for many 

actuarial applications. The value added from tuning a GPU falls 

on a spectrum that is dependent on the problem. There are 

instances where converting a CPU implementation of a model 

to a GPU implementation is straightforward, and tuning may 

only result in modest performance gains. On the other end of 

the spectrum, tuning may deliver substantial gains in 

performance and cost reductions. Some aspects of utilizing a 

GPU efficiently are related to understanding the structure and 

mechanics of a GPU processor. There are other aspects of 

tuning that center around how to best implement a calculation 

to optimize parallelism for a specific use case. There are 

instances where the optimal way to use a GPU is not optimal 

for a CPU.  

  



MILLIMAN WHITE PAPER 

GPU: Exploring use cases in actuarial modeling 13 

Introduction, applicability, benchmarks, and cost-performance overview. February 2026 

Different levels of understanding the technical aspects of a 

GPU architecture enable several relatively “standard” 

optimizations that are widespread in more sophisticated GPU 

use cases. The simplest example is choosing the right shape of 

the thread grid—in particular, the number of threads per block. 

Recall from our earlier discussion on thread warps that 32 is 

the minimum number of threads that can be executed 

simultaneously in a block. Therefore, best practice is to use a 

multiple of 32 as the number of threads in a block, thereby 

eliminating “empty” threads. Additionally, each GPU imposes a 

maximum on the number of threads per block (typically 1,024 

or 2,048). Clearly, these two constraints still leave a wide range 

of possible warp sizes.  

There is no single recipe for an optimal number; depending on 

the computational problem at hand and the specifications of 

the GPU used, different values might be the best in different 

cases. The relevant individual GPU specifications include, 

among others, the maximum number of blocks per SM, the 

maximum number of threads per SM, and the amounts of 

shared and register memory per SM. Finding the optimal 

choice is to seek a balance between occupancy maximization 

and memory bandwidth optimization. Occupancy is a measure 

of how many threads (or warps) are active in an SM at any 

given time, compared to the theoretical limit. This is important 

because it keeps the utilization of the SMs high and allows for 

latency hiding, which is a technique that allows the GPUs to 

quickly switch from threads that are stalled (waiting, e.g., for 

memory operation) to others that can perform their operations 

and, in that way, minimize the effect of some bottlenecks. On 

the other hand, there are limits on shared and register memory 

sizes on each SM. The more threads are executed on an SM, 

the less memory is available per thread, which might increase 

latency due to additional global memory access required.  

Another way to minimize latency and increase performance is 

to use streams. They allow for a certain degree of 

asynchronous operations on the GPU—simultaneously 

executing kernel invocations and memory transfers between 

the host and GPU, as well as independent kernel executions to 

run in parallel. Minimizing bottlenecks and ensuring maximum 

GPU load can ultimately be quite a challenging task. 

Fortunately, there are sophisticated tools, such as NVIDIA 

Nsight Compute19 for CUDA workflows, that can analyze 

workload performance and generate guidance on how to 

potentially optimize it.  

It is also important to understand the GPU features that are 

available on the device one is using and how those features 

can be accessed in different programming languages and their 

libraries. Some will allow greater control over technical 

 

19. See the NVIDIA Nsight Compute product page at 

https://developer.nvidia.com/nsight-compute. 

execution parameters, and some provide additional tools. An 

example of this can be GPU Direct Storage (GDS),20 which is a 

toolkit that enables direct data transfers between the GPU and 

data storage. This allows skipping the CPU and general system 

RAM when reading and writing files, significantly speeding up 

input-output operations. In the aforementioned example of a 

prototype ALM model built for a French Milliman client, we saw 

a 12x decrease in the time required to generate result files after 

enabling Direct Storage for this step.  

A prime example of a more complex optimization is memory 

coalescing. When different threads of the same warp request 

data from the global GPU memory, the time it takes the GPU 

to fulfill those requests depends on where the data are 

physically located in memory. In the best case, requested 

data cells are adjacent to each other, and, as a consequence, 

can be provisioned back to threads all at once. However, if 

those cells are spread in different parts of memory, it will take 

several cycles to collect all of them and ultimately fulfill the 

warp request. Memory coalescing ensures threads within the 

same warp access data that are adjacent in global memory. 

When one is working with multidimensional numerical arrays 

(as is typically the case in the GPU context), ensuring the 

right alignment between threads and data cells in the array 

boils down to understanding the C-style versus Fortran-style 

memory order and accessing the arrays accordingly. In C-

style convention, 2D arrays are stored in memory in row-

major order, meaning elements of a single row are next to 

each other in memory. In Fortran-style convention, things are 

reversed, and column order is used, putting elements of the 

same column next to each other in memory. In higher 

dimensions, that arrangement corresponds to the innermost 

index changing most quickly (row-major memory 

representation) and the outermost index changing most 

quickly (column-major memory representation).  

FIGURE 15: ROW- VERSUS COLUMN-MAJOR MEMORY ORDERING 

 

 

  

20. See the NVIDIA GPUDirect Storage product page at 

https://docs.nvidia.com/gpudirect-storage/. 

https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/gpudirect-storage/
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Another memory-related example would be optimizing the code 

to use shared memory (or registers) instead of global memory. 

As shown before, the latter is the slowest of the available GPU 

memory types, so if different threads of the same thread block 

need to use specific data elements multiple times, it is more 

efficient to make one thread copy those elements to shared 

memory so that the other threads can access them there. 

Given the very limited amount of shared memory, this must be 

carefully designed to achieve the expected improvements. This 

refinement can then be expanded to optimize which threads 

access which physical banks of the shared on-chip memory. 

Specifically, when multiple threads attempt to access memory 

in the same bank, they can block each other, delaying the 

execution. Managing access to shared memory so that 

simultaneous requests are served by different memory banks 

removes this bottleneck. There are many examples of such 

low-level technical optimizations available on the Internet. One 

of them, which uses an example of a reduction-type problem—

namely, summation—was presented in an Nvidia webinar 

some years ago: Optimizing Parallel Reduction in CUDA21. In 

this webinar, the author shows how he achieved a total 30x 

performance improvement in his final optimized kernel over the 

initial naïve one, proving how important this step is if one is 

after the lowest runtimes possible.   

On the other end of the spectrum, there are things that do not 

require deep knowledge of GPU architecture, but more of an 

algorithmic view of how massively parallel processing is 

different from “typical” sequential computing. That means that 

very different algorithms might be significantly more efficient 

on GPUs than those taught and used in conventional CPU 

programming. The most basic example for this is substituting 

a “main” loop of the sequential solution with the distribution to 

threads in a GPU context. There are many more possibilities, 

and sometimes finding an efficient algorithm to solve a 

problem on a GPU requires out-of-the-box thinking. For 

example, in some cases it might be more efficient overall to 

do things that seem counterintuitive—such as avoiding a 

return of control to the CPU to perform calculations more 

efficiently executed there and instead embedding those 

calculations inside an existing GPU kernel—to avoid memory 

transfers. A similar technique is to repeat a calculation that 

uses identical data and operations in all threads, which, in a 

CPU implementation, might be better to perform once and 

cache to realize the requirements of independence, or to 

repeat calculations within a single thread that could otherwise 

be cached to overcome memory limitations.  

 

21 Harris, M. (n.d.). Optimizing parallel reduction in CUDA [NVIDIA Developer 

Technology]. NVIDIA. 

https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reducti

on/doc/reduction.pdf. 

This section barely touches on the various ways in which GPU 

code can be made more efficient. We invite the more curious 

readers, not afraid of technicalities, to research these topics 

further online (particularly using a rich NVIDIA blog and 

webinar library). It cannot be overestimated how important this 

is, given examples showing that benefits from optimizing might 

even outgrow benefits from the naïve conversion from CPU to 

GPU in some cases.  

Cost–Performance analysis 
Based on the benchmarks presented in this paper, it is clear 

that even a single GPU can significantly outperform multi-

core CPUs, with the exact performance improvement factor 

heavily dependent on the type of problem, hardware used, 

and GPU-specific optimizations applied to the algorithm and 

implementation.  

The key question remaining is how much does this 

performance cost? As we mentioned earlier, due to the AI 

hype, GPU prices soared in recent years. But their availability 

in different cloud offerings has also considerably increased. 

GPU instances are available for ad hoc and long-term 

provisioning from all the main cloud providers (such as Azure, 

AWS, GCS).  

As a first step in evaluating the relative cost-performance ratio, 

we consider recent generations of CPU and GPU instances 

provisioned in Azure with the Linux operating system and using 

the bond valuation benchmark performance ratios as the basis: 

 Standard_HB176rs_v4, a high-performance CPU VM with 

176 CPU cores priced at $7.20 per hour 

 Standard_NC80adis_H100_v5, sporting two H100 GPUs 

priced at $13.96 per hour 

FIGURE 16: AZURE COST-ADJUSTED PERFORMANCE RATIO GPU (2X)  

TO CPU (176X) 

 

 

 

0
1
2
3
4
5
6
7
8
9

10
11
12
13

 100k  1 mln  10 mln  100 mln  1 bln  10 bln

Total Time Computation Time

https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/reduction.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/reduction.pdf


MILLIMAN WHITE PAPER 

GPU: Exploring use cases in actuarial modeling 15 

Introduction, applicability, benchmarks, and cost-performance overview. February 2026 

At least in Azure, after accounting for cost differences, the 

benefit of GPUs over CPUs is more muted, though still 

substantial, approximately a single order of magnitude. Thus, 

demonstrating that when determining the potential cost savings 

of converting a model from a CPU to a GPU, using the 

computational improvement alone (potentially two or three 

orders of magnitude better than a single CPU) may overestimate 

the monetary savings by an order of magnitude or more. 

As indicated, there are also companies specialized in 

provisioning GPU compute power, which, on one hand, provide 

a wider variety of GPU models and full control over which GPU 

VM one might want to use, and on the other, offer more 

competitive prices for the GPU VMs than generic providers 

such as Azure or AWS. An example of such a specialty 

provider is the aforementioned RunPod.IO22 used in one of our 

benchmarks. Below, we present the cost-adjusted performance 

factor for the H100 GPU provisioned from RunPod.IO relative 

to the 176-core CPU instance provisioned from Azure. The cost 

of the Azure instance with 176 cores (Standard_HB176rs_v4) 

at the moment of executing this benchmark was $7.20 per 

hour, whereas the cost of using a RunPod.IO single H100 PCIe 

GPU instance was $1.99 per hour.  

Factoring in the cost ratio into the performance ratio, we can 

clearly see in Figure 16 that the GPU is not only faster but also 

cheaper to use, resulting in stable and impressive total cost-

adjusted performance improvement factors (note that the pure 

performance comparison was done against a 16x core 

instance, whereas here it is against a 176x core instance).  

As most companies might be bound by their IT policies, long-

term contracts, and infrastructure choices to use a specific 

cloud service provider, the cost-adjusted GPU benefits might 

be somewhat less prominent (however, still clearly visible and 

tangible). If using a dedicated provider specialized in GPU 

cloud services is an option, it should definitely be considered, 

as their pricing tends to be more competitive. 

FIGURE 17: RUNPOD.IO COST-ADJUSTED PERFORMANCE RATIO GPU (1X) TO CPU (176X) 

 

  

 

22. Accessed 12 December 2025: https://www.runpod.io. 

0

20

40

60

80

100

120

140

160

180

200

100 k 1 mln 10 mln 100 mln 1 bln 10 bln

1x H100 Total time

1x H100 Computation time

https://www.runpod.io/


MILLIMAN WHITE PAPER 

GPU: Exploring use cases in actuarial modeling 16 

Introduction, applicability, benchmarks, and cost-performance overview. February 2026 

Conclusions 
The inclusion of CUDA in higher-level programming languages 

has reduced the expertise needed to migrate a model from a 

CPU implementation to a GPU implementation. The ability to 

effectively tune a GPU may still necessitate a higher level of 

technical expertise, depending on the problem. Furthermore, 

the capacity to exploit GPU hardware is also different between 

the languages. Use of CUDA or OpenCL from C/C++, for 

example, enables explicit access to GPU hardware, but 

requires extensive programming expertise. Conversely, 

languages such as Python (with Numba) and Julia or Mojo 

require only modest programmer effort to leverage the GPU, 

but do not expose the same capacity for fine-tuning. Although 

large performance differences are possible depending on the 

language used and the GPU-specific optimizations applied, 

even in the most naïve approaches enabled by Python, the 

model runtime improvements from enabling GPU computations 

can be impressive and, at the same time, more cost-efficient 

than scaling up cores for the CPU models. 

There is also an increasing number of proprietary modeling 

software that explores or includes the possibility of leveraging 

GPU computational capabilities in one way or another. 

Typically, an attempt to generically convert any model code 

into GPU code will be less efficient than designing a dedicated 

algorithm and implementation for a specific problem. This, in 

turn, can typically be significantly further improved by applying 

GPU-specific technical optimizations. In any case, for models 

that meet the broadly outlined GPU-suitability criteria and are 

computationally demanding, a GPU seems to be an excellent 

path to one- or two-orders-of-magnitude performance 

improvements, with somewhat lower, but still significant, cost 

savings versus CPU-based approaches. 
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